
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University Microfilms International
A Bell & Howell Information C om p any

3 0 0 North Z e eb Road, Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 USA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O rder N u m b er 9126854

Object oriented paradigms for com puter aided structural
engineering

Yoon, Chong-Yul, Ph.D .

University of California, Berkeley, 1990

Copyright © 1990 by Y oon, Chong-Yul. A ll rights reserved.

U M I
300 N. Zeeb Rd.
Ann Aibor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Object Oriented Paradigms for
Computer Aided Structural Engineering

By

Chong-Yul Yoon

B.S. (Massachusetts Institute of Technology) 1980
M.S. (Massachusetts Institute of Technology) 1982

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING
CIVIL ENGINEERING

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Approved:
Chair:. . .

DOCTORAL DEGREE CONFERRED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Object Oriented Paradigms

for Computer Aided Structural Engineering

By

Chong-Yul Yoon

Abstract

The increase in use of computers in many aspects of engineering constructed facilities has

been enormous during the past few decades. Computers are used for analyses of struc­

tures, design checks and optimization, cost estimation, construction planning, etc. Using

proven algorithms, many of the individual tasks are now highly automated. Engineering,

however, involves interaction among many of these tasks and productive structural

engineering systems must be an integrated software system. This dissertation deals with the

fundamental interface to the resources in a computer system that engineers need to face in

developing an integrated engineering system; specifically, the interfaces are a programming

paradigm and a data model to represent engineering information in the database.

Object oriented concepts and paradigms have recently emerged as a promising theme in

developing large systems. The objectives of the present study are to develop an object

oriented software design method and an object oriented data model that are to become

fundamental tools in developing large and integrated engineering systems.

The dissertation begins by introducing object oriented concepts. It then evaluates

languages for engineering software development. The commonly used procedural

languages such as Fortran and C are discussed. Various object oriented languages are con­

sidered and the C+ + language is proposed as an appropriate language to develop today’s

engineering application programs. This is followed by the design and implementation of

an object oriented finite element program written in C+ + . Based on experience in

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

implementing this finite element program, a general guideline for object oriented develop­

ment of engineering software using C + + is given. This guideline emphasizes levels of

abstraction and reusability. A programming paradigm is an essential interface to the

resources in a computer; the other interface is a data model that can effectively represent

engineering information in the central database of the integrated system. A simple object -

oriented data model appropriate for engineering information is proposed in this disserta­

tion. The model treats classes as objects and message sending is the only mechanism

necessary for communication among data objects, database users and database administra­

tors. This makes the model simple and uniform. The dissertation concludes with a sum­

mary of the work and recommendations for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Approved:

Chair

www.manaraa.com

Object Oriented Paradigms for

Computer Aided Structural Engineering

Copyright c 1990

Chong-Yul Yoon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DEDICATION

To my parents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Professor Robert L. Taylor for

his guidance, motivation and continuous support during the course of this research. I

would also like to thank Professors Gregory L. Fenves and Alice M. Agogino for serving

on the dissertation committee.

I would like to express my deep gratitude to Professor Anil K. Chopra who guided my gra­

duate studies at Berkeley and who was a constant motivating force for me.

My thanks to fellow students in Berkeley for their support, friendship and encouragement

during my studies at the University of California at Berkeley. A special word of gratitude

to Malcolm Gaustad for his editorial advice.

I am forever indebted to my parents, whose continuous love and support made this dream

a reality. This dissertation is dedicated to them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V

Table o f Contents

Abstract

Acknowledgements ... iv

Table of Contents ... v

CHAPTER 1. INTRODUCTION

1.1. Computer Integrated Structural Engineering .. 1

1.2. Objectives and Scope .. 4

1.3. Dissertation Organization ... 5

CHAPTER 2. OBJECT ORIENTED CONCEPTS

2.1. Introduction ... 7

2.2. Basic Object Oriented Concepts .. 8

2.2.1. Objects, Classes, Methods, and Messages .. 8

2.2.2. Encapsulation ... 9

2.3. Object Oriented Techniques ... 10

2.3.1. Inheritance .. 10

2.3.1.1. Derived and Base Class Relationships 10

2.3.1.2. Single, Partial and Multiple Inheritance................................ 11

2.3.2. Polymorphism ... 12

2.3.2.1. Polymorphism via Inheritance... 12

2.3.2.2. Overloading .. 12

2.3.2.3. Late Binding ... 13

CHAPTER 3. PROGRAMMING LANGUAGES FOR ENGINEERING

SOFTWARE

3.1. In troduction... 15

3.2. Programming Principles .. 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

vi

3.2.1. Programming Styles .. 16

3.2.2. Programming Paradigm s.. 19

3.2.2.1. Procedural Paradigm .. 20

3.2.2.2. Data Hiding P arad igm .. 22

3.2.2.3. Data Abstraction Paradigm ... 23

3.2.2.4. Object Oriented Paradigm .. 25

3.2.2.5. Other Approaches to Programming 32

3.3. Programming Languages for Engineering softw are....................................... 34

3.3.1. Deficiencies in Fortran .. 36

3.3.2. C, A Modern Procedural Language ... 41

3.3.3. The C++ Language ... 46

CHAPTER 4. OBJECT ORIENTED DEVELOPMENT OF

FINITE ELEMENT PROGRAMS

4.1......................................Introduction ... 50

4.2. The Finite Element M ethod ... 52

4.2.1. A Finite Element Displacement Formulation 52

4.2.2. Current State of Teaching the Finite Element Method 54

4.3. Object Oriented Development of Finite Element Programs 56

4.3.1. General Guidelines for Object Oriented Development 57

4.3.1.1. Levels of A bstraction... 58

4.3.1.2. Class Library and Reusability ... 59

4.3.2. An Object Oriented Program for Finite Element Instruction 63

4.3.2.1. Levels of Abstraction in a Finite Element

Displacement Formulation .. 64

4.3.2.2. Extension for Dynamic Analysis ... 67

CHAPTER 5. AN OBJECT ORIENTED DATA MODEL FOR

ENGINEERING DATABASES

5.1 In troduction.. 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Review of Database and Data Models .. 75

5.2.1. Basic Database Concepts and Term inology.. 76

5.2.2. Data Models ... 80

5.2.2.1 Network, Hierarchical, and Relational Models 80

5.2.2.2 Data Model Issues for Engineering D a ta 84

5.2.3. Object Oriented Databases ... 85

5.3 An Object Oriented Data Model .. 87

CHAPTER 6. SUMMARY AND CONCLUSIONS

6.1. Summary 95

6.2. Recommendations for Further R esearch... 96

6.3. Concluding Remarks 98

References ... 99

Appendix: Declarations of Classes in OPFI .. 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1
INTRODUCTION

1.1. Computer Integrated Structural Engineering

A broad definition of computer aided engineering is any support that the computer pro­

vides in delivering an engineered product. In structural engineering the product is a con­

structed facility such as a building, factory, bridge or dam [Fenves 89a].

The increase in use of computers in many aspects of engineering constructed facilities has

been enormous during the past few decades. Computers are used for analyses of struc­

tures, design checks and optimizations, cost estimation, construction planning, producing

engineering drawings, etc. Using proven algorithms, many of the individual tasks are

highly automated; that is, they require very few directions during the solution process.

Engineers today approach new and larger problems with computers in mind as computa­

tional and information storage devices. Recently, powerful work stations have been pro­

curable at reasonable prices and have dramatically increased the general availability of

computers to a professional engineer. However, the increases in power and availability of

computers have not changed the fundamental way computers are used in engineering con­

structed facilities; computers are still mainly used for computing many segregated but well

defined algorithms and storing large amounts of pure data which have meaning only in the

context of some application program. The methods of sharing data across organizational

boundaries have not improved that much either; it is still common to find that in one

office a designer uses a powerful computer aided design and drafting (CADD) package to

produce a project drawing, and in another office, a construction estimator uses a digitizer

to put the information from that same drawing back into another computer. The result is

loss of efficiency and, perhaps more important, the potential for errors [Howard 89].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

While competent human resources will become more valuable, computers will become even

cheaper and more powerful. New computer software systems for engineering must be inves­

tigated with this premise. An environment that integrates many tasks is one such system.

In this environment, an engineer can devote most of his time applying his creativity and

abstract knowledge that are usually applicable to a set of tasks in a phase and not to indivi­

dual tasks. For example, one needs creativity for good design and design involves many

individual tasks such as analysis, serviceability checks, code conformance, aesthetic appeal

considerations, etc; many of these individual tasks are already automated.

The term integration has been in fashion for some time in the computer aided design

(CAD) field [Neeley 89] and the phrases vertical integration, horizontal integration and lev­

els o f integration are often used in the literature. In structural engineering, these phrases

are used to mean the following [Sauce 89; Abdalla 89]:

1. Vertical integration refers to the integration of computers into all phases of

engineering a constructed facility where the phases range from the early conceptual

design to the final construction planning.

2. Horizontal integration refers to the integration of different tasks within a phase of

engineering a constructed facility; for example, the tasks of analysis, serviceability

checks, code conformance, and drawing generation in the design phase of

engineering a constructed facility are brought together in a horizontal integration.

3. Levels of integration refers to the scales of integration; for example, a horizontal

integration may be considered as low level (small scale) and a vertical integration

may be considered as high level (large scale).

An integrated software system is still an objective and not a reality in structural engineer­

ing. Multilevel-Selection-Development Model for structural design process [Sauce 89],

Component-Connection Model of buildings [Powell 88a], a model for functional and spa­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

tial aspect of buildings in construction process [Garett 89], and other studies are conducted

towards developing a fully integrated structural engineering system.

Interest in integration of programs is not new to engineering. Translators, neutral formats,

and standard specifications have been used to passively integrate programs:

1. Translators: programs that take some data, generally an output from one module,

and produce data in a format that can be read as input by another module. A

translator is simply a data reformating program that integrates two modules. In

civil engineering, the translator approach has been used to integrate pre/post pro­

cessors with finite element analysis codes [Craine 81].

2. Neutral Formats and Standard Specifications: a module produces data in an

agreed format (specification) and other modules read the information in that neu­

tral format. A module only needs to read and write in a neutral format to become

a part of an integrated system. IGES (Initial Graphic Exchange Specification)

developed by the National Bureau of Standards is a defined format for the crea­

tion of a file which enables data found in today’s commercially available

CAD/CAM systems to be exchanged or archived [Smith 86].

A database can play a unifying role in an integrated system [Rasdorf 85], and by far the

most appealing approach to develop an integrated engineering system is using a central

database as the repository of information.

In traditional relational databases, the emphasis is on allowing multiple users to share a lot

of the same accurate, consistent and up-to-date information. In the database for an

integrated system for engineering, there is an additional emphasis that data must possess

semantic richness as it is common in engineering to deal with complex data entities; in

structural engineering, data are typically beams and columns and not integers and charac­

ters. Traditional relational databases are weak in handling complex information in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

Computer Aided Design(CAD) and Computer Aided Engineering(CAE) [Dawson 89].

Many feel object oriented databases are suitable for dealing with complex design and

engineering applications [Fenves 89b; Garett 89; Keirouz 87; Powell 88b]. The reasons

why an object oriented integrated database system for structural engineering have not

emerged yet are the following :

1. Object oriented data models for engineering are still under investigation.

2. Elegant models for tasks and processes in structural engineering that are to be

integrated are still at theoretical stages.

3. The size of the project for any realistic problem is huge and requires long term

commitment.

A software module in an integrated system must be versatile and flexible. The concepts of

objects and object oriented paradigm in programming languages and software development

represent the most promising unifying paradigm in the design and coding of a large

software system. They have been used successfully to develop complex software systems in

office information [Hogg 85], knowledge representation [Bobrow 83], and VLSI CAD

[Katz 85]. Object oriented software development and programming languages show much

promise in developing large engineering software in an integrated engineering system.

1.2. Objectives and Scope

The present study deals with the interface to the resources in a computer system that struc­

tural engineers need to face to develop integrated structural engineering systems. This

includes a programming paradigm that is part of an integration tool and a data model that

allows engineering views of contents in the database. A n object oriented paradigm that

may be found in programming languages and databases is the central and unifying theme

in developing an integrated structural engineering system. The main objectives of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

dissertation are concerned with an object oriented software development methodology and

an object oriented data model that are appropriate for engineering systems; specifically, the

objectives include the following:

1. Evaluate the advantages and disadvantages of using an object oriented language to

develop engineering applications; identify a practical object oriented language that

is appropriate to develop a large and integrated engineering software system.

Then critically compare the object oriented language (C+ +) with languages that

are currently used in engineering applications (Fortran and C).

2. Develop a C+ + finite element program using object oriented concepts.

3. Based on the object oriented finite element program, devise a guideline for an

object oriented development of engineering software where the programming para­

digm is an essential tool in developing integrated engineering systems.

4. Develop an object oriented data model that is sufficient to support engineering

entities in a central object oriented database of an integrated engineering system.

The scope of this dissertation is limited to investigating object oriented languages that are

available to the public and object oriented database features that will likely be available in

commercial object oriented database management systems. Implementation issues of

language and database features are outside the scope of this study. In addition, impracti­

cal theoretical features are not studied. For example, new features in a language or a data­

base management system are not investigated.

1.3. Dissertation Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents object

oriented concepts. The essential features of an object are outlined and how inheritance

and polymorphism are utilized in object oriented approaches is discussed. Chapter 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

reviews programming principles and programming paradigms. Fortran, C, and C+ + are

critically evaluated as a language for engineering software; the merits of C + + as a

language for developing large and integrated engineering software systems are identified.

Chapter 4 follows with a guideline for an object oriented development of engineering

software; the guideline is based on a finite element program that is developed as a teaching

tool using object oriented concepts and the C+ + language. Chapter 5 reviews database

systems and discusses the appropriateness of object oriented databases for integrated

engineering systems. Requirements and description of an object oriented data model that

will be viewed by engineering application developers and database designers are also

presented. Chapter 6 summarizes the results of the study and presents some concluding

remarks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2

OBJECT ORIENTED CONCEPTS

2.1. Introduction

This chapter summarizes some of the important concepts which are used in object oriented

programming and data modeling.

The notion of an object as it is known today first appeared as a programming construct in

Simula, a language for programming computer simulations [Birtwistle 71]. In the 1980s

object oriented concepts were popularized mainly through the Smalltalk language and pro­

gramming environment and many terms first used in Smalltalk are found in the literature

to define and discuss object oriented concepts (See Chapter 3, Section 3.2.2.4, and refer­

ences [Goldberg 83; Goldberg 84]).

Object oriented approaches are used in programming language constructs and mechanisms,

data models, databases, execution-time support for objects in constructing object oriented

applications, and environments for object oriented software development. The interest and

promise of object oriented concepts have produced many definitions and interpretations by

not only the computer scientists but also the general computer users. Although precise

definitions are still not possible, more than a decade of history has produced general

characteristics of object oriented concepts and techniques.

Basic object oriented concepts and terminology are presented in Section 2.2. Inheritance

and polymorphism schemes are described in Section 2.3 as object oriented techniques. The

focus in this chapter is the concepts and techniques that are relevant to object oriented pro­

gramming languages and object oriented data models. Object oriented approaches that

may be found in other applications are outside the scope of this dissertation.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8

2.2. Basic Object Oriented Concepts

The terms used in this section are selected from variations found in texts on Smalltalk

[Goldberg 84], LOOPS [Bobrow 83], CLOS [Keene 89], and C+ + [Stroustrup 86].

2.2.1. Objects, Classes, Methods, and Messages

An object oriented system consists of many objects, and the system evolves as objects send

messages to each other. Each object occupies a portion of memory and is an instance of a

class. The values in memory constitute the state of the object.

A class is an abstract data type that defines the behavior and properties of objects that are

members of the class. An object may be a member of many classes through inheritance

(see the following section) but it can only be an instance of one class.

The behavior is the set of methods that are defined for its class. A method (called member

function in C+ +) definition includes the following parts:

1. The generic function that the method specializes;

2. The method’s applicability conditions;

3. Any qualifier that identifies the method’s role;

4. A parameter list that receives the arguments; and

5. The body executed when the method is called.

The property of a class includes the data types and structure of object’s memory which are

called the object’s instance variables (called data members in C + +). Some data values

may be the same for all objects in the same class and these data are associated with the

class, not with each object. They are called class data (called static data members in

C+ +).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

The behavior (set of methods) and state (values in memory) comprise the active properties

of an object. The data types and structure are sometimes called passive properties to distin­

guish them from these active properties.

A message is a syntactic construct that consists of:

1. An object identifier that singles out one object as the receiver of the message;

2. The message name; and

3. Some additional objects that are passed as arguments.

When an object receives a message, it invokes one of its methods. A special method may

be designed to handle the messages that the object does not comprehend, i.e., does not

have an appropriate method to invoke. The general result of a method invocation is a

change in state, behavior, or property of the object. Although most applications limit this

change to the state of the object, a messaging scheme where the behavior and properties of

an object can be modified or extended is within the general object oriented concept.

2.2.2. Encapsulation

A means of dividing a large system into smaller and manageable subsystems that can easily

be developed and maintained has always been a concern in computer science. In this

respect, encapsulation is arguably the most important characteristic of objects and all object

oriented approaches exploit encapsulation in various ways.

Data and classes packaged or encapsulated as objects are externally visible only through

messages. The instance variables are visible only by the object’s methods. The implemen­

tations of the methods are hidden and only the message interface is shown externally. The

state, properties and behavior of objects are strictly managed by a set of methods defined

by the object’s class. In addition to modularity of encapsulated objects, the advantage is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

that the rules for manipulating the object’s data are defined when the object is defined and

cannot be changed without changing the object.

Object encapsulation is fundamental in the development of a large integrated system, partly

because the specification language for an object need not be the same as the implementa­

tion language. There is a great deal of software that is not written in terms of objects and

this can be repackaged into objects with valid external interfaces; also, different languages

may be appropriate or practical for implementing different kinds of objects while a com­

mon language can be used for external interfaces.

2.3. Object Oriented Techniques

Inheritance is often the fundamental feature that distinguishes object oriented approaches

from others. Overloading and late binding are mere techniques that are much used in

object oriented approaches to implement the concept of polymorphism.

2.3.1. Inheritance

Class inheritance, or simply inheritance, is a basic reusability mechanism in an object

oriented paradigm. The other basic reusability mechanism is the instantiation of objects

via classes.

2.3.1.1. Derived and Base Class Relationships

The idea behind inheritance is to provide simple and powerful mechanisms for defining

new classes that inherit properties (i.e., methods and instance variables) from existing

classes. The new class is called a derived class and the classes that the properties are inher­

ited from are called the base classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

The relationship between a derived class and its base class can be one of the following:

1. Specialization : This provides the basis for top down design of classes. The base

class is a general class that captures the similarities between objects while the

derived classes define the specifications for the differences.

2. Modification : This provides the mechanism for partial inheritance where only

selected properties of the base class are inherited by the derived class; i.e., the set

of properties that is not to be inherited can be masked or hidden to the derived

classes.

3. Extension : This provides the mechanism for adding new properties by the

derived class.

4. Aggregation : This provides the mechanism where a complex object can be con­

structed from a number of constituent objects, i.e., bottom up construction by pro­

viding a building block mechanism that allows complex objects to be built from

previously defined simple ones. It also provides a basis for top down decomposi­

tion of complex objects into progressively simpler ones.

Note that the derived class is a subset (or sub type) of its base class only in the specializa­

tion type of inheritance. Instead of the terms derived class and base class, the terms sub­

class and superclass are often used in the literature; however, subclass and superclass imply

the notion of subset and superset. The terms derived class and base class are more mean­

ingful in the present context and are used subsequently throughout this dissertation.

2.3.I.2. Single, Partial and Multiple Inheritance

The most simple inheritance is where a derived class inherits the entire properties of a sin­

gle base class. But because the base class can be a derived class of another base class, a

class in simple inheritance can have many base classes. The class hierarchy in a simple

inheritance forms a tree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

A partial inheritance is where there is a mechanism for inheriting only a part of the pro­

perties in the base class.

A multiple inheritance is where a derived class can have many base classes directly above

it. Thus the class hierarchy where a multiple inheritance is allowed forms a lattice instead

of a tree. Multiple inheritance is essential in many applications but a conflict of names for

methods can be a problem. The system must provide default rules for selecting one

method or for combining inherited methods, or the user must make an explicit choice,

e.g., by preceding the method name with the base class name. The former approach can

be error prone and the latter approach can become quite clumsy.

In order to preserve the encapsulation of the base, a derived class should not have direct

access to the instance variables of the base class. However, many systems violate this rule

for efficiency reasons (e.g., the friend mechanism in C + +) .

2.3.2. Polymorphism

Polymorphism is the ability to process a heterogeneous collection of objects in a uniform

fashion. Inheritance, overloading and late binding arc the techniques for polymorphism in

an object oriented approach.

2.3.2.1. Polymorphism via Inheritance

Inheritance is closely related to polymorphism: the property of a base class is exhibited by

all the derived classes.

2.3.2.2. Overloading

In a language with compile-time type declaration, an operator may be defined with the

same name, but different argument types. When a call to that name is compiled, the com­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

piler uses compile-time type information to select which code to call. This is called opera­

tor overloading. When a function instead of an operator is overloaded, it is called an over­

loaded function. Operator overloading has existed in languages for quite some time. For

example, the original Fortran did not allow mixed mode arithmetic; i.e., no operator over­

loading. The later versions of Fortran and many other programming languages allow

arithmetic operations where arguments can be any arithmetic type and this is a form of

operator overloading.

In an object oriented approach where there are many classes, which are similar to types in

languages, operator overloading becomes a necessary interface to a user when there are

many different classes with similar characteristics. Like an operator, which is just a syntac­

tic convenience for a function calling scheme, overloading is a syntactic convenience that

requires compile-time type checking of arguments. However, to a user of classes, an

operator that maintains its behavior transparently for different arguments has found to be

extremely useful. The limitation is that overloading only allows static polymorphism; i.e.,

the differences among objects must be known before execution time.

2.3.2.3. Late Binding

In theory of programming languages, binding is usually understood as the process of match­

ing compiled binary modules to produce an executable image which involves assigning a

memory address to each module and patching external references with the correct memory

addresses. When binding occurs during compilation and before execution time, it is called

early binding (or static binding) to differentiate it from late binding (dynamic binding).

Late binding means that the binding occurs at execution time.

Binding in an object oriented system concerns the selection of method to respond to a mes­

sage: in late binding, the method selected to respond to a message is determined at execu­

tion time. Late binding in an object oriented paradigm is the only way to uniformly treat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

similar objects whose differences are determined at execution time, and this allows more

flexible run time polymorphism.

Late binding is also important for flexible behavior of objects where the objects are allowed

to receive any message during execution time; however, this flexibility can cause more

errors since compile-time checking is impossible.

Concepts described in this chapter are used subsequently to describe an object oriented pro­

gramming development environment and data modeling suitable for structural engineering

applications. Prior to this discussion, alternative programming languages are first con­

sidered in Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3

PROGRAMMING LANGUAGES
FOR ENGINEERING SOFTWARE

3.1. Introduction

Engineering activities make heavy use of computers and with computer technologies evolv­

ing rapidly, much of the challenging computer aided engineering activity involves writing

new programs in addition to running existing ones. The selection of a programming

language is one of the initial decisions that influences the quality of software, acceptance

by users, and cost of development and maintenance. In the past, engineering programmers

were relieved of making this decision because Fortran was the programming language for

most engineering software.

Fortran still remains an effective language to write programs when the major complexity in

the problem is numeric computations. Today, the size of problems and engineering

software systems have increased dramatically and numeric computation is only a part of

problem; major problems (e.g., the so called software crises) are in control of interactions

among modules, management of data, and integration of software systems. Traditionally

trained engineers are competent in handling numeric complexity but they lack computer

fundamentals to attack the software crisis. One of these fundamentals is programming

principles. The rest of this chapter reviews programming principles and presents C+ + as a

language that supports current programming paradigms and is suitable to meet the chal­

lenges of today’s engineering software crises.

This chapter is organized as follows. Programming styles and paradigms are presented

under Programming Principles in Section 3.2. Procedural, data hiding, data abstraction

and object oriented paradigms are reviewed. Section 3.3 discusses languages for

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

engineering software in general and Fortran, C and C + + in particular. Deficiencies in

Fortran as a procedural language are elaborated. C is discussed as a modern procedural

language and C+ + is presented as a superset of C in which the added supports for the

object oriented paradigm blend well with the base language C. The C+ + language is pro­

posed as an appropriate language to develop today’s engineering application programs.

3.2. Programming Principles

Programming principles give unified and logical approach to program design and code

whose neglect will prove disastrous for large projects. Programs based on the maxim "First

make the program work, then make it pretty" may be effective for small programs but sim­

ply will not work for large ones [Kruse 84].

Programming principles are one of the earliest fields established in computer science. Pro­

gramming styles and programming paradigms are essential parts of programming princi­

ples.

3.2.1. Programming Styles

A disciplined programming style makes debugging and maintenance of large programs pos­

sible. No large program is bug-free and all programs need maintenance, i.e., the need to

meet new user requirements and to operate in changing computer environments.

Generally, development of software systems follows these stages [Sommerville 89].

1. Specify Requirements : Precisely formulate and specify the software requirements.

This results in a formal document commonly called SRS (Software Requirements

Specification) in the industry and it becomes a part of the contract between the

client and the software developer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

2. Design : Selecting algorithms, organizing data structures and coordinating person­

nel are all parts of software design.

3. Coding : Coding is the translation of the design into codes.

4. Testing : A set of tests are conducted so that the product meets the requirements

in SRS and the developer’s own standards.

5. Delivery : The code is delivered to the client and the client undertakes a set of

tests before accepting the product.

An undisciplined programming style usually places too much emphasis in coding.

Theoretically, coding is just a translation of instructions from the design stage into legiti­

mate codes. When the instructions from the design, commonly in pseudo code, are clear

and logical, coding is straight forward. However, errors and poor design are often

detected during the coding stage. Fixing a minor error in design becomes a major task.

Poor design produces poor product and in unfortunate cases, total failure.

The life cycle of an engineering software system varies from one run (sometimes unsuccess­

ful) to about five years. Maintenance follows the initial development. The cost of mainte­

nance is estimated somewhere between one-half [Kruse 84] to two [Bell 87] times the cost

of development. Whatever the exact figure is, this cost is usually underestimated, and

sometimes forgotten or neglected during the development stages.

For example, the U. S. Government Accounting Office (FGMSD-80-4) reported in 1980

the following breakdown of federal software projects :

3.2M (47%) - paid for but not delivered

2.0M (29%) - delivered but not used

1.3M (19%) - abandoned or reworked

0.3M (5%) - used after rework or as delivered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

Almost 95% were failures and the reasons can be attributed to changing user requirements

and unreliable codes that are impossible to maintain.

A reliable or robust code is a code that can be maintained. A simple bug can be found

and fixed without introducing a new one. Minor additions and modifications can be made

without a major reorganization. Reliable codes are characterized by

1. Clarity

2. Modularity and

3. Structured Programming.

Clarity applies to the executable source code but also to comments and external documents.

In the code, mnemonic names are used for variables and function names. Familiar algo­

rithms are used instead of cryptic processes with tricks. Clarity often takes precedence over

efficiency in computation or data storage. The lay out of the code on the screen is organ­

ized using indentation and spacing so that relations among the elements of the code are

clear to the viewer.

Modularity characterizes the independence of modules. A module can be a block (group of

statements), a procedure, or a group of procedures in a single file. A module’s function

must be general so that it can be widely re-used. The independence of a module depends

on how the module is coupled with the rest of the program. Cassel identifies three types of

couplings between modules and they are listed below in order of decreased independence

[Cassel 83]:

1. Data coupling : Data coupling occurs when only data is passed or shared between

the modules. Modules coupled by data are considered independent.

2. Control coupling : Control coupling occurs when flags are passed and an operation

in one module affects an operation in another. Control coupling can be removed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

by redesign or by dividing the module into smaller independent modules. This

type of coupling is acceptable if it is not too extensive. Extensive control coupling

violates structured programming.

3. Content coupling : Content coupling occurs when one module alters the contents

of another module. This is a severe coupling between modules and the name

module is a misnomer in this case.

Structured programming is now intuitive to most programmers. It is based on the proof that

all computer programs can be coded by using only three logic structures or combinations of

these structures [Dijkstra 76] :

1. Sequence : Sequential execution of statements.

2. Selection : 1F-THEN-ELSE and CASE (or SWITCH) types of statements.

3. Repetition : FOR, DO-WHILE and REPEAT-UNTIL types of loop statements.

The three structures are useful in a disciplined style of programming because the code is

simplified. Only the three building blocks are used and as a result there is a single point

of entry into the structure as well as a single point of exit. Structured programming enables

the program to be read top to bottom, making the logic of the program visible and under­

standable to those concerned with debugging and maintenance. A go-to statement is a

culprit in structured programming and there are two schools of thought: one advocating

"no go-to" and the other advocating "limited go-to". Use of go-to for error handling is gen­

erally considered acceptable [Knuth 74].

3.2.2. Programming Paradigms

A programming paradigm is a form of solution to a problem and it guides the approach to

arriving at a solution. Four paradigms starting with the oldest to the most recent one are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

listed below. Representative programming languages that support each paradigm are also

shown below with approximate year of initial implementation.

1. Procedural: Fortran (1957), Pascal (1971), C (1972)

2. Data Hiding : Modula-2 (1979)

3. Data Abstraction : Ada (1980s)

4. Object Oriented : Smalltalk-80 (1982), C + + (1983), Objective-C (1984)

These paradigms offer different models o f abstraction that systematically divide and con­

quer complexity that are inherent in large problems. The four paradigms are discussed

next in terms of language supports that are necessary to support each paradigm. Features

in the languages listed above are used as examples; the syntactic details of specific

languages are omitted so that general ideas are highlighted.

3.2.2.I. Procedural Paradigm

The procedural paradigm is the oldest and most common programming model. It is also

called functional decomposition because the idea is to divide the problem into functional

components and focus on operations and algorithms needed to perform the desired compu-

tations in each function. Reliable parameter passing schemes between functions and

expressive operators in a language are necessary to support a procedural paradigm.

There are many ways of parameter passing and an abridged list is shown below [Rowe 86]:

1. Call-by-value : Parameter value is passed and the value is discarded upon exit

from called function.

2. Call-by-value/result : Parameter value is passed and the value is copied to a pass­

ing parameter upon exit from the called function.

3. Call-by-copy-in/copy-out : Similar to call-by-value/result, but the passing parame-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

ter is evaluated at copy out.

4. Call-by-reference : This is formal reference to a calling parameter which is passed

and returned upon exit. This scheme can cause bad side effects.

5. Call-by-name : This scheme evaluates the parameter in the calling environment

every time it is referenced.

Only call-by-reference and call-by-value are found in most languages. Fortran is call by

reference, C is call by value, and Pascal supports both call by value and reference (called

variable parameter in Pascal).

In programs written in languages that only support a procedural paradigm, the operations

and data are intertwined and it is hard to distinguish the algorithm from the data. This

lack of attention to data design and data structure in a procedural paradigm yields fine

granularity, i.e ., small building blocks. We find that procedural programs are difficult to

reuse. Often a procedure’s function meets the requirements but the procedure cannot be

used as it is and modification generally entails comprehension of many unnecessary details.

Fortran is the original procedural programming language; Pascal and C came later in the

same tradition but they give some attention to data structure: records in Pascal and struc­

tures in C [Davis 78; Wirth 71; Kernighan 87].

As problems became larger over the years, it was recognized that complexities cannot be

resolved by procedural paradigm alone and emphasis was shifted to organization of data.

The next three paradigms - data hiding, data abstraction, and object oriented - show pro­

gressive advancement and elegance in organization and the use of data. Even program­

ming of complex algorithmic problems may be greatly simplified by use of well designed

data structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

3.2.2.2. Data Hiding Paradigm

The data hiding paradigm is also called modular programming. The idea is to group data

and implementation details in modules and provide a clear interface for each module.

When a module is implemented, only the interface is shown to users.

Modula-2, a language that supports data hiding, is a descendent of Pascal and Modula.

The syntax is close to Modula but Modula-2 is essentially an extension of Pascal with

module concepts. The interface part (called definition part in Modula-2) and the imple­

mentation part of a module are clearly separated. Other language supports for data hiding

come in explicit control of the scopes of names (import/export) and module initialization

mechanisms [Wirth 88].

Fortran and Pascal do not have any features that support data hiding. In C, data hiding

can be implemented by grouping related data and implementation into a single source file

and then a separate header file can be shown as the interface. This, however, does not

necessarily mean that the C language supports data hiding. A language supports a para­

digm or style if the language provides facilities that make it convenient and safe to use.

For example, one can write structured programs in Fortran and use data abstractions in

Modula-2, but these languages do not support these techniques [Stroustrup 88a].

The separation of implementation and interface in data hiding is similar to a black box

concept. This is the concept of encapsulation found in object oriented programming and it

results in codes that are easier to maintain and re-use than procedural programs. The

interface of a module is the external description of the black box and it is analogous to the

description of the built-in type of a language. However, the use and behavior of a built-in

type is much more convenient than a module. The syntax for use of a built-in type is sim­

ple and multiple uses of it do not require special handling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

3.2.2.3. Data Abstraction Paradigm

The phrase abstract data type is used in the literature to mean a user-defined type and it

constitutes the concept of class in object oriented programming. The objective of a data

abstraction paradigm is to have user-defined types behave and be used exactly like built-in

types. Data abstraction is an essential subset of an object oriented paradigm and often is

confused as the object oriented paradigm. To highlight the essential relationship and the

difference between the two paradigms, the data abstraction paradigm is also called the

object based paradigm.

To support data abstraction, a language provides mechanisms to define a full set of opera­

tions and hide the implementation details for user-defined types. The concept of hiding

the implementation details is from the data hiding paradigm. The mechanisms to define a

full set of operations may be divided into four categories:

1. Initialization (constructors) and declaration.

2. Implicit conversion.

3. Operator overloading.

4. Destructors.

The mechanisms for initialization of user-defined types must allow unrestricted use of

assignment (=) and other declaration formats that are used for built-in types. The

mechanisms for implicit conversion, which are internally related to the initialization

mechanisms, are also necessary for convenient use of existing operators. For example, if

an operator is defined for one type of argument and the conversion from the actual type of

argument to the type required by the operator is obvious, then this should be allowed by

mechanisms in the language for implicit conversion. Implicit conversion also enables more

flexible use of operator overloading, which is an essential part of data abstraction para­

digm. It minimizes the distinction between built-in and user-defined types. Destructors are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

operations to free the memory when objects of user-defined types are no longer used.

Support for a data abstraction paradigm is at the expense of computer efficiency both at

compile and execution time. Many of the mechanisms rely on additional function calls

and there is always an overhead associated with a function call. The overhead for operator

overloading is that the argument types have to be looked up before determining which

code to execute. Codes that are packaged as user-defined types are more general and reli­

able than modules in data hiding.

A type, whether built-in or user-defined, is a concrete representation of a concept. The

reason for designing a new type is to provide a specific definition of a concept that has no

direct and obvious counterpart among the built-in types. Many of the pioneering develop­

ment and implementation of user-defined types are found in the languages Simula [Birtwis­

tle 71] and CLU[Liskov 77]. Simula is a popular language in Scandinavia and CLU is an

experimental language developed at MIT. Convenience and logic in using and defining

user-defined types can be accomplished with elegant definition of a language. Implement­

ing the language so that execution and compile time behaviors are acceptable is perhaps a

more difficult problem; for example, balancing the extent of type and array bound check­

ing at compile time to ensure reliable behavior at execution time is a difficult problem.

Ada is a general purpose programming language commissioned by the US Department of

Defense to replace the diverse collection of languages that are used to build their computer

systems. It is a complicated language that incorporates many desirable features, and sup­

posedly has input from most language design experts in the world. Ada supports the data

abstraction paradigm with the concept of a package. A package in Ada contains parts that

are private. This is the part that the package developer does not want the users to see.

The users only sees the interface part of the package which the package developer has

chosen to show. Ada supports operator overloading so that the use of packages can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

more flexible. Initially, the benchmark tests for execution time and compile time behaviors

of a small portion of Ada code were disappointing and many concluded that Ada would

never become a practical language. However, recent reports on Ada benchmark tests show

marked improvements, comparing reasonably well with codes written in Fortran or C [Ich-

biah 79; Ada 83; Ada Letters 1990].

3.2.2.4. Object Oriented Paradigm

The object oriented paradigm extends the data abstraction paradigm in ways in which the

classes may be defined and the objects may be operated. The Object oriented paradigm

allows classes to be more general and flexible than the ones based only on a data abstrac­

tion paradigm by using two techniques (See Chapter 2, Section 2.3.):

1. Inheritance; and

2. Polymorphism.

In the object oriented paradigm, classes are organized as a set of inheritance hierarchies

and the relationship between a derived class and a base class may be one of a specializa­

tion, modification, extension, aggregation or combinations of these as discussed in Chapter

2, Section 2.3.1.1. A class can also be derived from more than one base class, i.e., multi­

ple inheritance. The essence of an object oriented paradigm is not just in defining classes,

but it is in how flexibly the classes can be derived from existing classes and how general

the classes can be defined so that they become widely re-usable base classes.

Ada is sometimes said to support an object oriented paradigm because it allows one to

derive new types from existing types. However, a new type derived from an existing type

in Ada is not really a new type because Ada only allows restrictions on an existing type to

derive a new type; for example, if there is an existing integer type that can hold values

from 1 to 100, a new integer type may be derived from this type where the new type can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

hold any subset of integers from 1 to 100, but any new type derived from this integer type

cannot be programmed to have integers less than 1 or greater than 100. These restrictions

on how a new type may be derived from an existing type are severe and Ada cannot be

said to support an object oriented paradigm.

The oldest example in the literature on object oriented programming uses shape where an

object in that class responds to the message draw. The derived classes are circle, square

and triangle. When message draw is sent to a shape object, the method selected to respond

to this message is determined at execution time and it depends on whether the object is a

circle, square or triangle. A t a later time, when a new shape, say an ellipse, needs to be

added, the programmer merely defines ellipse as a derived class of shape and provides a

method to draw it. The important implication of this simple example is that late binding

combined with inheritance allows execution time polymorphism.

One of the most important objectives of programming styles and paradigms is to produce

programs that can be maintained. Developing large systems are expensive. This cost is

justified only if the developed system can be maintained during its expected life cycle. The

three previous programming paradigms - procedural, data hiding, and data abstraction

paradigms - assume the need to modify existing codes to meet new user requirements and

to operate in changing computer environments. An object oriented paradigm is funda­

mentally new in its approach to maintenance in that execution time polymorphism can be

used to modify or extend capabilities of a system without modifying existing codes.

Object oriented programming languages :

Data hiding and data abstraction paradigms are essential parts of object oriented paradigm.

The complete language supports for an object oriented paradigm must include the following

four features:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

1. Encapsulation (from the data hiding paradigm).

2. User-defined type (from the data abstraction paradigm).

3. Inheritance.

4. Polymorphism.

The language that has probably had the most influence on the evolution of the object

oriented paradigm is Smalltalk [Goldberg 83; Goldberg 84] and it may be considered as the

ancestor of all object oriented languages. Other languages that support the object oriented

paradigm include C + + [Stroustrup 86], Objective-C [Cox 86], LOOPS [Bobrow 83], Fla­

vors [Cannon 80], CLOS [Keene 89] and Object-Pascal [Schmucker 86]. Smalltalk is a

pure object oriented language but the other languages are hybrid languages that are exten­

sions of some base language. C+ + and Objective-C are extensions of the C language.

LOOPS, Flavors and CLOS are LISP based languages that extend the functional approach

to problem solving by emphasizing class hierarchies to organize facts about a problem

domain. Object-Pascal is Apple’s object oriented extension of Pascal where the syntax was

partly designed by Nicklaus Wirth, the designer of Pascal. Smalltalk, C+ + , and

Objective-C are three widely used object oriented languages and they are discussed in this

Section. Other hybrid languages mentioned above are not apt as languages to develop

large systems because their base languages are not considered as general purpose

languages. LISP is used mostly in artificial intelligence applications. Pascal was designed

as a teaching tool and its lack of support for separate compilation severely limits its capa­

bility to develop large programs. A more detailed survey of object oriented languages and

their uses is given in the book by Schmucker, Object-oriented Languages on the Macintosh

[Schmucker 86].

The three language extensions necessary to support object oriented programming are the

syntaxes for the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

1. Defining classes, including inheritance.

2. Instancing objects.

3. Sending messages to objects and late binding mechanism.

Smalltalk:

Smalltalk only has syntax for the three extensions mentioned above and this results in a

simple and small language. All binding occurs during execution and the language is made

even smaller and consistent by eliminating any concern for types; everything in Smalltalk is

inherited from only one type: an object.

The programming language aspect of Smalltalk is discussed here but Smalltalk is best

described as a programming environment that integrates the programming language, the

operating system, and other support tools such as editors, linkers and debuggers. The

entire environment is a research product of Software Concepts Group at Xerox PARC and

from the beginning its purpose has been to prove concepts. The general concepts had

remarkable influence on many academic and commercial systems such as Xerox’s Star

office automation system, Apple’s Lisa, and many of today’s high-resolution graphic

workstations. Smalltalk-80 is a version of the language, and it was purely a secondary pro­

duct. Smalltalk does not have any standard for the language or the class libraries and it is

not expected that there will be any portability among different versions of Smalltalk. The

language described in Smalltalk-80: The Language and its Implementation [Goldberg 83] and

the June 1981 BYTE magazine issue about Smalltalk are generally used in the industry to

derive different version of Smalltalk.

There is elegance in simplicity provided by a pure object oriented language like Smalltalk-

80. The traditional way of developing a program - start with an editor followed by

compile-debug cycle - may be used to code in Smalltalk but the Smalltalk environment was

designed for a completely different approach to program development. The Smalltalk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

environment is composed of interacting objects that are instances of classes. A new code is

tested by running it directly in the environment, which includes an operating system,

rather than compiling it separately and then running the compiled code under the control

of the operating system. Programming in Smalltalk proceeds by expanding the environ­

ment, not by generating a separate body of source code that is the product of traditional

programming. In order to be effective, familiarity with the tools in the Smalltalk environ­

ment is as important as the knowledge of object oriented programming. For example, the

browser and inspector classes are essential tools in the Smalltalk environment. Typical

objects in the browser classes are used to browse classes and class hierarchies in the

environment. When a class is selected using a browser, the text defining the class may be

brought to the screen. The class can be modified and when the new definition is saved,

the new definition is compiled.

The object oriented paradigm and the tools provided in the Smalltalk environment are new

to most programmers, and both must be utilized. Smalltalk language’s lack of support for

other programming paradigms and its departure from the traditional way of program

development have made it difficult for experienced engineering program developers to

adopt Smalltalk. From a technical perspective, the execution behavior of Smalltalk pro­

grams are still not very efficient. Late binding and operator overloading are useful, but

they have execution time overhead. Treating everything as objects yields consistency but

long inheritance hierarchies causes difficulty in depicting full properties of an object, espe­

cially to novice object oriented programmers and those who are not proficient in using

tools such as browsers in the Smalltalk environment. Smalltalk vendors have targeted as

their clientele professional programmers such as those building commercial Macintosh and

OS/2 applications for current and future products [Bergman 90].

Many extensions in hybrid languages compromise support to the object oriented paradigm

for execution time efficiency. Currently, a typical conventional program written in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

Fortran, C, or Pascal is expected to execute faster than an object oriented program. The

main reasons for execution time inefficiency in object oriented programs are late binding,

argument type checks for operator overloading and extra function calls. The Smalltalk

language ignores this problem and hopes that more efficient implementation and optimizers

will be developed.

Objective-C and C++ ;

Hybrid languages C + + and Objective-C are both based on C. With the exception of

minor details in C+ + , they both keep C as a subset. Therefore the programming para­

digms supported by C are retained. Binding is either early or late in both C + + and

Objective-C. When there is no need for late binding or the object oriented paradigm, the

conventional C features make these languages more efficient than Smalltalk-80. One

feature that is missing altogether in Objective-C is operator overloading. Usefulness of

multiple inheritance is recognized in Objective-C, C + + and Smalltalk-80. Original

Smalltalk did not support multiple inheritance but some later versions support it. In

Objective-C, multiple inheritance is not supported directly but can be simulated with a cod­

ing trick (see pg 90, [Cox 86]). No such trick existed for C + + and multiple inheritance

was not supported in the original version of C+ + ; however, later versions of C+ + pro­

vide support as proposed by Stroustrup in [Stroustrup 87].

Both Objective-C and C + + provide the three language extensions stated above that are

necessary to support an object oriented paradigm. These extensions are conceptual but a

language is more than just a support for concepts. Perhaps more important is the elegance

and uniformity in the syntax of the entire language. Objective-C adds just enough capabil­

ities to support an object oriented paradigm. C+ + redefines the C language to enhance

the procedural paradigm of C and to support an object oriented paradigm. The

approaches used by Objective-C and C + + to extend the base C language represent two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

fundamentally different ways in how a hybrid object oriented language may be defined.

Objective-C is one of the first object oriented languages that was developed as a commer­

cial product. It was originally sold by Productivity Products International and its founder,

Brad Cox, is the author of one of the earliest texts on object oriented programming and

Objective-C [Cox 86]. One of the concerns in designing Objective-C was portability and

the extensions were designed so that a simple translation of Objective-C to equivalent C

source code was possible. Objective-C adds just one new type and one new operation to C.

The new type is the object and it is called id. The new operation is the message expression

used to send messages to objects and has this syntax:

_msg(o b j e c t - i r i , "MESSAGE", a r g u m e n t l , . . .)

where ob j e c t - i d is type id and MESSAGE is the string that contains the message. All

objects in Objective-C are of type id and messages take the same form. Binding of

methods to messages and distinction between different kinds of objects are handled at exe­

cution time. These simple extensions are designed to support the Smalltalk-80 style of

object oriented programming. A deficiency in Objective-C as a general programming

language is that the object oriented extensions do not blend with the C language; this was

never intended and some may not consider it a problem. However, uniform treatment of

many different features is a prominent characteristic of a powerful general purpose

language.

C++ [Stroustrup 86] is an enhancement to the C language where one of the major enhance­

ments is support for the object oriented paradigm. A new keyword introduced in C+ + is

class and is used to define new types. However, class blends well with the rest of the C

language because the concepts behind it are not entirely new; class is struct in C extended

to support user-defined types and inheritance. Once a class is defined, object instantiations

follow similar forms that are used in C to declare objects of built-in types. For efficiency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

reasons, late binding is limited to those methods that are explicidy declared as virtual in

the base class and other methods that are all bound at compile time. The C+ + language

is an efficient language that uniformly supports many programming paradigms, one of

which was the object oriented paradigm. In Section 3.3.3, C+ + is discussed in more

detail.

3.2.2.5. Other approaches to programming

This discussion on programming will not be complete without mentioning functional and

logic programming. These are so called declarative approaches that depart radically from

the mainstream of programming paradigms discussed thus far.

Logic programming aims at supporting programming instructions that are easy for humans

to provide. This contrasts dramatically with conventional instructions based on data and

operations which are easy for a computer to understand. Logic programming suggests that

explicit instructions for operations not be given but the knowledge about the problem and

assumptions that are sufficient to solve it be stated explicitly as logical axioms. The pro­

gram is executed by providing it with a problem, formalized as a logical statement to be

proved, called a goal statement. The execution is an attempt to prove the goal statement

given the assumptions in the logic program. Prolog is the prime example of a logic

language. The origins of the language can be traced to early 1970s to Alain Colmerauer

and his colleagues at the University of Marseille-Aix but a major boost to Prolog and logic

programming came in October 1981 with the announcement of the Japanese Fifth Genera­

tion Project where they adopted Prolog as the programming language. [Colmerauer 73;

Sterling 86].

Functional programming is based entirely on functions which are considered as values that

do not change. In functional languages, all procedures are functions of their arguments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

which are bound at execution time. There is no provision for assignment or mutable data.

The assignment is an essential operation in conventional programming but functional pro­

gramming advocates say that assignment complicates reasoning about programs because it

introduces time boundaries into process; the value of a variable is changed by an assign­

ment at the moment of the assignment, which makes uses of that variable before the

assignment different from uses of that variable after the assignment. This actually is one of

the fundamental reasons why conventional programming is sequential and devising a con­

current language based on the conventional programming model is hopeless.

The most common functional language is LISP [Wilensky 84], a language known for many

dialects which includes MacLISP (developed at MIT), InterLISP (partly developed at

Xerox PARC) and FranzLISP (developed at UC Berkeley). Portability of LISP programs

is a concern because of many dialects and Common LISP is a version that tries to set a

more uniform standard for LISP programs. LISP is an acronym for LISt Processing. A list

is a binary structure where the first argument holds an element and the second argument is

recursively the rest of the list. Intuitively, a list is items enclosed in parenthesis where an

item can be atomic (nothing or an element) or another list. The syntax of the LISP

language is just lists where the first item is the function name and the rest are arguments.

LISP is normally used as an interpreter where a programmer enters lists and LISP evaluates

them. The LISP language was first conceived by John MacCarthy and his students at MIT

in the late 1950s. LISP is one of the oldest languages that has not only survived but also

flourished in the field of artificial intelligence. More modem functional languages are Id

[Nikhil 88] and ML [Milner 84]. Baugh demonstrates applications of functional program­

ming to develop finite element systems [Baugh 89].

Functional programming and logic programming are used mostly in artificial intelligence

applications such as expert systems and natural language processing. Another dominant

area of interest in these programming approaches is their parallelism. The promise of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

parallel computers and parallelism that seems to be available in logic programming and

functional programming have lead attempts to devise concurrent languages based on these

programming models.

3.3. Programming Languages for Engineering Software

Programming Languages provide tools to implement the paradigms and which paradigm to

use often depends on the availability of tools. The language also governs the way we think

about the problem and the details that actually make a solution work. The distinction

between a support for a paradigm (or style) and a mere enabling of a paradigm is impor­

tant. A language supports a paradigm if it provides tools that make it convenient to use

that paradigm. If it takes exceptional effort and tricks to implement a paradigm, the para­

digm is not supported although we may say that it enables the paradigm [Stroustrup 88].

A paradigm that is not supported but enabled in the language by coding tricks often results

in cryptic codes that are sources of errors during the maintenance cycle.

Literally hundreds of computer programming languages are defined; however, most

engineering applications software are written in Fortran. Pascal is a popular teaching

language in many engineering institutions but is not used to develop large systems because

the language does not support separate compilation of its units, i.e., when any portion of

the code is altered, the entire program has to be recompiled. Fortran and C support

separate compilation which permits the programmer to compile pieces (functions and sub­

routines) separately and later paste them together during linking. The C language has

gained some acceptance by engineers. Although Fortran and C are both procedural

languages, there are distinct features of C that make it a modem procedural language.

Recently, C+ + has become arguably the most widely used object oriented language.

C+ + has C as a subset so it is also a procedural language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

This section discusses the following:

1. What exactly is deficient in Fortran.

2. Features in C that make it a modem procedural language.

3. Procedural enhancements and support for the object oriented paradigm in C+ + .

The discussion assumes some familiarity with Fortran, C and C + + . Evaluating a

language simply based on whether a feature exists or not is deceiving because a new

feature can always be added as it is demonstrated by Fortran. Thus the following discus­

sion does not compare Fortran, C, and C+ + based on a set of specific criteria, but each

language is discussed separately in terms of its general features.

A procedural paradigm alone is not sufficient to develop a complex engineering system.

The need to adopt a new language that supports modem programming paradigms which

may be used to develop complex engineering systems is apparent: C+ + is proposed to be

that language. For almost forty years, engineers basically settled with Fortran. Not all

were content with Fortran as there were attempts in the past to change the old habits and

adopt a new language such as PL/I [Augensten 79] or Algol [Anderson 64]. Fortran not

only survived but even today dominates development of new software. More than four

hundred years ago, Nicolo Machiavelli understood man’s reluctance to change his tools as

he wrote in The Prince:

Nothing is more difficult to carry out, nor more doubtful of success,

nor more dangerous to handle, than to initiate a new order of things.

For the reformer has enemies in all those who profit by the old order,

and only lukewarmness arising partly from ...

the incredulity of mankind, who do not truly believe in anything new

until they have had actual experience in it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

3.3.1. Deficiencies in Fortran

Fortran, which is an acronym for FORmula TRANslator, was originally conceived in 1953

by Backus and his colleagues at IBM [Backus 81]. The language was not really designed

because the primary purpose at the time was to evaluate science and engineering formulas

as efficiently as possible. The first version of Fortran was released in 1957. Fortran-II was

released in the following year and it corrected some shortcomings of the original version.

The short-lived Fortran-Ill introduced boolean and alphanumeric data. Fortran-IV made a

few changes in the basic instructions and added some additional features to Fortran-m.

Fortran-IV eventually evolved into Fortran-66, which was the first official standard. A

revised American National Standard Fortran was adopted in 1978 and this version,

Fortran-77, is available for use on almost all computers today. Fortran-77 is the second

standard, but it is the first standard designed by a standards committee. Major new addi­

tions in Fortran-77 were in connection with file processing and character manipulation.

Fortran-77 also clarified some ambiguities in Fortran-66, especially in the DO -loop parame­

ters. Other versions, namely WATFOR, WATFIV and WATFIV-S, were developed at

the University of Waterloo as teaching tools and some of their significant features were

adopted in Fortran-77 [Davies 78].

Computer scientists and programming language experts have concluded long ago that For­

tran is deficient with many features that are obsolete. The reason for pervasive use of For­

tran in engineering applications today is believed to be the inertia (billions of lines of For­

tran code exist) of Fortran codes and not the inherent advantages in the language [Fenves

89a]. Even the initial popularity was not because of the merits in the language but because

it was offered and supported by the largest hardware supplier, IBM [Holtz 88]. However,

inertia and long history have attracted brilliant minds from time to time and they have pro­

duced very efficient Fortran support tools, such as compilers, optimizers and mathematical

libraries, that aid in producing efficient engineering and science application programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

This is a reality and should not be taken lightly; enormous amounts of efficient Fortran

codes exist and any engineering system that requires rewriting of these codes is not

economically feasible. Only new codes should not be produced using obsolete methods

and new minds should not be limited to the knowledge of Fortran.

Reliable codes are characterized by clarity, modularity and structured programming (see

Section 3.2.1). Fortran does not support clear coding, modularity, or structured program­

ming.

Clear coding includes giving mnemonic names to variables, informative comments and

visually organized layout. Fortran variable names are restricted to six characters or less,

case (upper/lower) is insignificant and comments have to start in column 1. The source

code is fixed format (i.e., label in columns 1-5, continuation in column 6, statements in

columns 7-72, C in column 1 for comment) which is a remnant from card punching days.

These restrictions are considered obsolete and do not exist in other languages. Some For­

tran compilers allow more than six characters for variable names but this allowance can

cause nightmares since some other compiler may ignore the characters beyond the sixth; for

example, COLUMN 1 and C0LUMN2 can end up referring to the same variable COLUMN.

Another obsolete Fortran feature is the treatment of blanks. Blanks in Fortran source code

are treated as insignificant, except in FORMAT and in character strings. Compilation

involves one or several passes over the source code by scanner, parser, semantic analyzer,

and object code generator. The scanner transforms the source code into a string of tokens

where a token is an indivisible element of the source code. Scanner is a simple one pass

operation with a minimal or no look ahead for most other languages. Because blanks are

insignificant, the scanner in a Fortran compiler requires analysis and back tracking. For

example, the scanner cannot conclude whether the statement DO 10 I=S ,20 is a D0-

loop or an assignment of 5 to variable DO10I until the comma is processed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

A program unit in Fortran is the procedure. Fortran does not provide nested procedures

(procedure defined inside another procedure) or recursive procedures (procedure that calls

itself). Fortran has two kinds of procedures: functions and subroutines. Such distinction is

actually not necessary since a function is a subroutine that returns a value or a subroutine

is just a function that does not return a value. The interactions among subroutines in For­

tran programs are usually through a long list of arguments and data in the common blocks.

In a typical Fortran program, there is no modularity among procedures as huge common

blocks are accessible by most subroutines and long lists of arguments generally depict some

serious coupling among subroutines. The language does not support modularity, but For­

tran users have aggravated the problem by devising coding methods that enable program­

ming features that are not supported by the language. Engineering programmers in For­

tran have for years used array indexing as an inelegant and nonstandard form of pointers

to a large array in a common block. The addresses of an array are used to control the

sizes of sub arrays within the large array and some have called this dynamic storage.

Memory management has always been a major concern in engineering programs and if

solving the largest problem solvable by the computer is a primary concern, this method

works. Furthermore, equivalencing arrays of different types and making use of the vary­

ing byte-sizes of the types, a typeless pointer is concocted. These are programming tricks

to simulate a concept that is not supported in the language. Pointers are actual memory

identifications and dynamic storage is storage that can be allocated or deallocated at execu­

tion time; Fortran does not have pointers and Fortran does not support dynamic storage.

Parameter passing in Fortran is call-by-reference. Call-by-reference can cause bad side

effects because a foreign environment, the called subroutine, has access to data that

belongs to the calling environment. One of the problems in parameter passing in Fortran

is not because it is call-by-reference, but because of misuse of call-by-reference by engineer­

ing programmers. In many engineering programs, an integer parameter is used as a con­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

trol flag, i.e., depending on the value of the parameter, the called subroutine branches to

different cases inside the subroutine. The problem is that a constant is often used as the

actual parameter. Consider a simple example where there are two subroutines, A and B.

f i l e l : SUBROUTINE A f l l e 2 : SUBROUTINE B(N)

CALL* B (1) N =*2

A statement in A calls B with constant 1. Subroutines A and B will compile, but what is

going to happen when the program is loaded and executed? With some old compilers, 1

mysteriously became 2 . Fortunately, this problem is known to compiler writers but the

error can only be detected during execution time. Theoretically, call-by-reference should

not allow constants as actual parameters but such a requirement will not be popular since

use of constants as actual parameters in Fortran is common.

Fortran does not have any features that support structured programming. One of the pri­

mary language supports for structured programming is a block structure. A block structure

is a group of statements where there may be variables local to the group and where the

group may be placed anywhere a single statement is allowed. Block structures in other

languages usually have the following syntaxes:

1. BEGIN . . . group of statements . . . END

2. (. . . group of statements . . . 1

Although structured programs can be written in Fortran, computed GOTO’s and lack of

block structures in the language have yielded many unstructured Fortran programs in

engineering.

The most touted feature of Fortran is the rich set of intrinsic numerical routines. The reli­

able behavior of many of these routines for the basic numerical types which include

integer, real, double precision and complex have led many engineering application

developers to ignore the deficiency in the language in other basic constructs. Fortran has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

only one basic construct for selection: the IF-THEN-ELSE statement. The statement for

selection from many cases, so called CASE or SWITCH construct, is missing and it has to

be simulated with a series of IF-THEN-ELSE statements. Fortran only has one basic con­

struct for repetition: DO-loops; all repetitions have to be put into this form in Fortran.

Fortran was a pioneering language but a poorly designed one by today’s standard.

Although many remnants of the original designs are in Fortran-77, no criticism should be

directed to the original designers for they had enough trouble designing one of the first

high level languages that could be implemented. No one at the time could be expected to

anticipate the requirements of a good language applicable some 35 years later. In fact

many software concepts and theories of programming languages were developed after For­

tran.

The ANSI (American National Standards Institute) Standards Subcommittee X3J3 has pro­

posed a new Fortran standard informally known as Fortran-8x in 1987 [Global 87]. This

subcommittee is under the administrative control of ANSI X3, the group responsible for

computer systems. Major new features added are operations on entire or portions of

arrays, dynamic storage, and supports for modules and user-defined types. Fortran-8x

allows more flexibility in the documentation of source code: the source code may be in

free-form, the comments may start anywhere in a line, and variable names may be up to

31 characters. User-defined types and modules are designed to promote the creation of re­

usable software and these features have led some to compare Fortran-8x with Ada.

Fortran-8x is compatible with Fortran-77 which means that Fortran-77 programs will con­

form to Fortran-8x. Partly because of this, a major criticism of Fortran-8x is that the

language has become too big. Others have noted that instead of standardizing existing

practices, which X3J3 is supposed to do, the committee is designing a new language.

Major features missing in Fortran-8x are pointer types, bit data type and bit manipulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

operations, other control constructs, block structure, and variant data structure. These

features are all supported in C. In addition, the deficiencies of Fortran discussed in this

section do no exist in C which is partly why C is a modern procedural language.

3.3.2. C, A Modern Procedural Language

C was originally designed for the UNIX operating system on the DEC PDP-11 by Dennis

Ritchie at AT&T Bell Laboratories. The first implementation was operational in 1972 and

after almost 20 years its popularity is still attributed to the merits in the language [Holtz

88]. C is well known as a systems programming language because operating systems such

as UNIX and many compilers are written in C. But C is a general purpose language that

has been effective in many other applications such as numerical and database programs. C

is not tied to any particular machine and many powerful portable programs are written in

C. However, C also allows programs that are intentionally not portable. Today, C com­

pilers are available for practically all computers from the smallest personal computers to the

very large mainframes.

Key characteristics of C are discussed next and the features that are different from Fortran

are noted. C, like Fortran, is a procedural language. The idea behind the procedural

paradigm in conquering a complex problem is to divide the problem into many simple pro­

cedures. All procedures in C are functions. The function called main is different because

the program starts there. Functions are developed in C to resolve complexity, for re­

usability and also for clear coding. Programming in C involves writing many functions. C

supports recursion and the best way to write a recursive function is to assume that the func­

tion already exists and freely call the function from inside the body that is being written.

Recursive functions often provide elegant codes and the only caution is that the recursion

must terminate for all cases. The parameter passing in C is cal!-by-value and to have the

side effect of call-by-references, pointers must be used. Pointers to functions as arguments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

can also be used to simulate the passing of functions as arguments. Pointers are closely

linked to arrays and they can be used for more efficient computations of array subscripts.

This is important in engineering application programs where there are many arrays of

numbers and programs spend a good deal of time computing subscript values.

C is a small language; there are 32 key words, 41 operators (considered as a very rich set),

and the complete syntax summary can be fit on five pages. Most books on C describe the

language as versatile and expressive. This is because C provides a rich set of basic ele­

ments of the language and few simple rules to derive unlimited possibilities. The basic

types are characters, up to three sizes of integers, and up to three sizes of floating point

numbers. The integers can be qualified as unsigned and others can be qualified as con­

stants. C gives attention to the structuring of data. There are four simple ways to derive

new data types: arrays, pointers, unions, and structures. Unions hold different data types

in the same memory and structures are collections of one or more data types. C allows

structures to be assigned as a unit, passed to functions as arguments and returned by func­

tions. Structures are called records in other languages but they are generally more restric­

tive in other languages. If a definition of a derived data type becomes too elaborate

typedef can be used to give it a more mnemonic name. The possibilities of derived data

types are infinite and each kind has a different utility. In C, there is no separate 1 o g i —

ca I type like Fortran. Integer values that are not 0 are true and 0 is false.

C provides all the basic control-flow constructs. For branching, there are the if-else state­

ment for branching into t r u e or fa I se and the switch statement for branching into one

of multiple cases. There are three loop constructs: the do statement where the termination

test is after the body of the loop, the while statement where the test is before, and the for

statement where the test is before and the control parameter jumps in value after each loop.

C is not a block structured language like PL/I or ALGOL mainly because functions cannot

be defined inside a function. But C supports block structures ({ . . . J) to group

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

statements together and local variables may be declared inside the block. This block struc­

ture may be placed anywhere a single statement may appear. The control and block struc­

tures in C support structured programming.

The assignment in C (=) is a binary operator and like other operators it yields a value

when used. In C, a value does not have to be used in the program. Function yields a

value but it does not have to be used. In a place where a value can be placed, an expres­

sion is allowed. Expression is also a statement. This is why in C, it is just

nam8_of_ f unc t i on () to invoke the function and not call name_of_f u n c t i on () like

Fortran. This is also why in C, an expression like y=z=4 is legal and it assigns the value

4 to z and the value of z = 4 , which is 4, to y. A single C statement,

uh i I e (*B++ = *A++);

is an instruction to traverse all the characters in string A and copy them to string B.

Because of such statements some people have criticized C codes as cryptic - others have

praised it as expressive and versatile.

The language described in The C Programming Language, the original edition published in

1978 [Kemighan 78], has for years been the widely accepted standard for C. In 1983,

ANSI established a committee, X3J11, to begin the formal standardization of C. The pro­

cess of defining the standard C proceeded with many publications by the ANSI committee:

Preliminary Draft Proposed Standard - The C Language [ANSI 85] was available to the pub­

lic as an information bulletin in 1985, Draft Proposed American National Standard for Infor­

mation system - Programming Language C (document No. X3J11/88-001) was released on 11

January, 1988, and after a few more drafts, American National Standard for Information Sys­

tems - Programming Language C, X3.159-1989 was submitted to the ANSI Board of Stan­

dards Review for final approval on 31 October, 1988. As of early 1990, it has not been

approved and a formal ANSI standard for C may or may not exist by the end of the year.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

A current stumbling block is mainly political such as unhappiness expressed by foreign

countries through ISO (International Standards Organization) [Plauger 90]. The delay in

the standardization has not hindered the vendors who have marketed C compilers as ANSI

C, with the word draft written somewhere inconspicuously. Fortunately, the proposed

ANSI C leaves the original C language remarkably intact with only few exceptions. X3J11

began with the widely accepted definition of C given in Appendix A of [Kemighan 78]

and the final standard is expected to be not too different from the original C. The details

of the proposed ANSI C and the difference between it and the original C may be found in

The C Programming Language, the second edition published in 1988 [Kemighan 88],

The proposed ANSI C language adds few new keywords, formalizes some of the ideas sug­

gested in the original book, and clarifies some of the ambiguities that existed for some

time. A new keyword void is added to denote generic type. Void is to be used primarily

as void* to denote generic pointer. Wider capability of structures are now possible as they

may be assigned, passed to functions and returned by functions. Scopes of formal parame­

ters inside a function’s body and extern declarations in an inner block are clarified. Prob­

ably the most significant change from the programmer’s point of view is the introduction of

function prototype in declaration. In the original C, only function name and return type

are declared. In the proposed ANSI C, the types of arguments must also be declared in

proper order. The required syntax is borrowed from the C+ + language. This remedies a

long standing flaw in C where types of arguments across functions are generally not

checked by compilers. Another new keyword const used to qualify types as constants is

also borrowed from C+ + . BCPL (British Computer Programming Language) and B (the

language used to implement the first UNIX in 1970) have greatly influenced the design of

the original C. BCPL and B are typeless languages - the only type being the machine

word. Fortran and C are typed languages in a sense that there are many types in the

languages and a variable has to be declared before it can be used. In Fortran-77, implicit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

declarations (variables starting with I - N are integers and the rest are real) are used

quite extensively. The original C was not a strongly typed language in a sense that conver­

sion of types, especially between pointers and integers, was quite permissive and compilers

did not check the argument types in function invocations. The proposed ANSI C moves

towards more strongly typed language with the prototyping of functions and the introduc­

tion of void type.

The proposed ANSI standard also prescribes a set of constants that characterize the

machine on which a C program is run so that more powerful portable programs may be

developed. The major addition in the proposed ANSI standard is the C’s run time library,

which is not part of the language. There are fifteen groups in the proposed ANSI standard

C library of which the Input/Output (< s t d i a . h >) group is nearly one third and it has

the most heavily used functions. The functions used for dynamic storage are also included

in the library. Important to engineering applications is the math group (<math.h>).

There are 22 functions in this group and the functions provided are similar to the built-in

math functions in Fortran-77. However, Fortran-77 has many more functions because in

addition to generic functions (functions that accept any appropriate argument type) there

are different functions for different argument types. For example, there are three square

root functions in Fortran-77: SQRT (r e a 1*4) for single precision real and also generic,

DSQRT (r e a 1*8) for double precision real and CSQRT (comp I ex*8) for single precision

complex. There is only one square root function in <math.h>, s q r t (x) , which always

returns double (which is equivalent to r e a I *8 in Fortran-77) and the argument x is first

converted to double if it is int (integer) or float (which is equivalent to r e a 1*4 in

Fortran-77). The C math functions do not support complex numbers.

Besides the merits in the language, engineering application developers have recently pro­

grammed in C because there are many C functions that allow the programmer to con­

veniently interact with the operating system, graphics packages, and database systems. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

addition, Fortran subroutines can be called from C programs. In most UNIX systems, a

Fortran subroutine can be called from a C program by adding an underscore (_) after

the name of the Fortran subroutine and using pointer to argument as the actual argument

if the argument is not an array.

3.3.3. The C++ Language

C+ + was designed by Bjame Stroustrup in the early 1980’s at AT&T Bell Laboratories,

the place that has retained most individuals who have been influential in defining and

evolving the C language. Outside of Stroustrup’s language group, C+ + was available at

AT&T in 1983 and to the public in 1985. The C++ Programming Language [Stroustrup 86],

published a few months after the release of C+ + has served as an informal reference for

the language. Other books on C+ + soon followed [Berry 88; Weiner 88; Lippman 89;

Smith 90].

C+ + "compilers" can be divided into three groups:

1. Translators that produce C as the target code, and use C compilers to produce

object code.

2. True C + + compilers that directly produce object code.

3. Sold as C+ + compilers for marketing purposes, but they are actually translators

that hide the translation via C characteristic.

The initial implementation of C+ + was with translators. These translators are also called

a compiler front-end or a pre-processor to the C compiler. Widespread acceptance of

object oriented programming has been delayed because object oriented languages are some­

what taxing on CPU. A recent trend in C+ + is towards more efficient compilers that can

produce faster run time codes, and among many object oriented languages that have

emerged since the hype about object oriented programming in the 1980’s, C + + has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

become the most run time efficient language.

It is hard to measure the popularity of a language but there are indications that the C + +

user community is continuously growing while interests in many other object oriented

languages have somewhat stabilized. A t AT&T, C + + is becoming the de facto standard

language for development of new features and products. The C + + Conference held

under the auspices of the USENIX Association attracted approximately 200 participants in

1987 when it was held in Santa Fe; the conference held in Denver in 1988 attracted 500

[USENIX 88]. Recent issues of computer magazines such as Byte and Computer Languages

carry several advertisements for C + + compilers by Zortech, Borland, ImageSoft, etc.,

indicating growing popularity of C+ + among personal computer users as well.

C + + was originally designed to support large scale event-driven simulation projects.

Machine efficiency and compatibility with C were high on the priority list. With minimum

exceptions, newer versions of C+ + (AT&T V2.0 was released in 1989) also kept C as a

subset. C+ + is an evolving language and many suggestions for new features can be found

in the journal: The C++ Report. Multiple inheritance was formally implemented in version

AT&T V2.0. Parameterized types are being proposed [Stroustrup 88b] and some labora­

tory versions may already have it. Parameterized types allow definition of classes that can

have the name of type as a parameter; for example, an array of type can be defined and a

user can specify the type of elements in the array.

Because C+ + keeps C as a subset, it is a procedural language. There are additions that

are designed to enhance this procedural paradigm. Function prototyping (see Section

3.3.2) in the proposed ANSI C came from C+ + . Overloading of function names is

allowed. Trailing arguments of a function may be assigned default values. This is useful

in maintenance because a function can be modified to have some more arguments and

other programs that call the original function do not have to be changed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

C+ + ’s early name was C with classes. A major enhancement in C+ + is the class con­

struct, and an object oriented paradigm is supported with it. The struct in C is now a spe­

cial case of class where all data are public. Gass in C + + is the mechanism to define

user-defined types. Overloading for most of the C operators are allowed for operators

defined for class. Single and multiple inheritances can be used to derive a class from an

existing class. Most methods defined for classes are bound at compile time for efficiency

considerations. Only methods that are declared virtual in the base class and defined in the

derived class are generally bound at execution time. An object oriented paradigm necessi­

tates extensive function calls. In C+ + , a function can be declared inline to reduce the

function call overhead. Inline functions have the semantics of functions but they are

expanded on location by the compiler so the function call overhead is eliminated. C+ + is

a full fledged object oriented language by any standard.

It is useful to have many features in a language, but diversity of features does not make a

language useful or powerful. Added features are often causes of errors and confusion.

However, the added features in C+ + seem to blend well with C and reports on the short

experiences with the language are mostly encouraging. Criteria for a good language are

usually very general or else we wouldn’t have so many languages whose users claim to be

powerful. C + + was designed for simulation projects but many have found it useful in

other applications such as systems programming at AT&T and graphics packages.

Widespread use in other areas means that helpful tools will emerge. Practically, C+ + is

compatible with C and C is compatible with Fortran. So C and Fortran codes that exist

can be utilized. Effective use of the object oriented paradigm requires useful class

libraries. Because such libraries are lacking and experience in C+ + in engineering appli­

cations is short, conclusion about the appropriateness of C + + for engineering programs

cannot be made; however, of all the existing languages C+ + seems to be the best choice

for many kinds of engineering application systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

The following list summarizes the merits in the C + + language that are considered

appropriate for engineering applications:

1. C+ + supports the object oriented paradigm.

2. C + + supports a modem procedural paradigm.

3. Diverse features in C+ + are blended together to give the look and feel of a uni­

form language.

4. Among the object oriented languages, C + + produces one of the most efficient

execution time code.

Merits in a language is important, but just as important are the practical concerns. The

following list gives practical indications that C + + can become the language to write the

next generation of engineering systems:

1. C+ + can utilize many existing engineering modules which are written in Fortran

or C.

2. C+ + was designed so that the conventional edit - compile - debug cycle is used

for program development. This and similarities with C make it easier for the

seasoned engineering programmers to learn the language.

3. An ANSI subcommittee was formed to standardize the C+ + language. When the

language is standardized, standard C+ + programs will be more portable.

4. Wide acceptance in other areas of application have produced efficient and

economic implementations on many hardware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4

OBJECT ORIENTED DEVELOPMENT OF
FINITE ELEMENT PROGRAMS

4.1. Introduction

Experience in applications of object oriented programming in engineering is still limited.

Fenves shows object oriented programming for engineering software development using

Smalltalk in reference [Fenves 90]. This chapter provides general guidelines for object

oriented development of engineering software using the C+ + language. Object oriented

development of software is based on modules that correspond to the objects within a model

for a physical system [Booch 86]. This differs from the conventional development of

software in which modules correspond to important functions of a real-world system.

A finite element program developed as a teaching tool using object oriented concepts and

the C + + language is used as an example. The chapter specifically discusses object

oriented development of finite element programs but the ideas are applicable to other com­

puter based methods and programs in engineering.

The finite element method is one of the most widely used methods of engineering analysis.

Most finite element programs are written in Fortran and engineering programmers who

have dealt with these programs at the source code level find these codes brittle, i.e., they

are difficult to add a new feature, hard to modify an existing routine, and often very diffi­

cult to maintain. However, there are enormous amounts of these routines that work and

tens of thousands of engineers who are familiar with how these programs are developed.

A hybrid object oriented language such as C+ + can fully utilize existing codes that are

written in Fortran or C. The procedural paradigm, with which most engineering

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

programmers are comfortable, is important in many engineering applications because the

algorithmic nature of many solutions are best translated into a program using a procedural

paradigm. The problem with many Fortran codes is maintenance, not their lack of ability

to solve a given engineering problem. After all, an object oriented paradigm does not

offer any new solution techniques, it only promises to cut the development and mainte­

nance costs of large systems by producing codes that are reusable and ones in which the

interactions among modules are manageable.

Long before the object oriented programming was introduced, the importance of clarity

and modularity in a program was recognized. Variations on how to produce such codes

had diverse schools of thought that emphasized structured programming, modular design,

top-down programming, etc. A general programming method introduced as good for all

programming activities was often too general to provide any guidelines. Algol and PL/I

are thought to have failed because each tried to be the language for all programming

activities. Although C + + has the merits to become the next language in engineering,

whether it will become one probably depends more on practical factors discussed in Section

3.3.3. This chapter advocates certain guidelines for writing C+ + programs for engineer­

ing applications that will produce clear, modular, and structured programs using both the

procedural and object oriented paradigms supported by the C+ + language.

The rest of this chapter is organized as follows. Section 4.2 presents a brief overview of the

finite element method; a finite element displacement formulation for elasticity problems is

outlined in Section 4.2.1 and how the finite element method is presently taught is discussed

in Section 4.2.2. Section 4.3 presents guidelines for object oriented development of finite

element programs in C+ + ; general guidelines are given in Section 4.3.1 and a C+ +

object oriented finite element program, which was developed to be used as a teaching tool,

is described in Section 4.3.2 as an example. The general guidelines for object oriented

development of engineering software systems are based on the experience from the actual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

design and coding of the object oriented finite element program.

4.2. The Finite Element Method

The finite element method initially proposed in mathematics by Courant [Courant 43] and

in engineering by Turner et ai. [Turner, 1956] has proved to be quite efficient as a com­

puter based analysis technique for the solution of many engineering problems specified by

sets of partial differential equations. The extensive publications on the applications and

the analyses of the method, decades after its initial conception, have shown that the

method has infinite variety but has specific rules and theorems governing its use. Many

areas such as finite elements with Lagrange multipliers, finite deformation elements,

materially nonlinear elements and shells are still subjects of intense research [Becker 86;

Hughes 87; Zienkiewicz 89].

The finite element method, however, has to be put into a program and the programming

techniques for the finite element method nearly have remained unchanged. Using a con­

ventional programming language, such as Fortran, many finite element programs are com­

plex and difficult to maintain. This is due in part to the requirement that the program

must specify all of the details of the exact computation sequences and data structures.

These low-level specifications are intertwined with the high-level mathematical formulation

of the method which usually is a few pages of matrix algebra, integrals and derivatives

[Rehak 89].

4.2.1. A Finite Element Displacement Formulation

The most common formulation of the finite element method is based on displacements as

primary global variables. General steps in a finite element displacement formulation of a

linear elasticity problem are outlined below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

1. Input the data defining geometry, elements, boundary conditions and loads.

2. Assemble the element stiffnesses ke into the global stiffness K,

K = 2 k<
where the ke are obtained by the following procedure :

2.1. Express the unknown displacements u in terms of the matrix of shape

functions N and the nodal variables a:

u = N * a
2.2. Express the strains c in terms of the strain matrix B and a:

e = B * a
2.3. Express the stresses a in terms the elasticity matrix D and e:

or = D * e
2.4. Express the element stiffness ke as an integral of matrix product:

ke = f a BT * D * B dV

3. Form the load vector F and apply boundary conditions.

4. Solve Ka = F.

5. Output the requested results.

Formulation procedures for other problems follow similar steps. The steps 1 through 5 may

be considered as a top level abstraction of the finite element method. A t this level, the

objects K, ke , F and a are visible. The steps 2.1 through 2.4 are an intermediate level of

abstraction below Step 2. The objects u, e, ct, N, B, D, a, and ke are visible at this level.

The top level description does not require any information on steps 2.1 through 2.4 but

choices made in these steps produce many different elements, which are reflected in ke.

The above formulation, although quite general, shows much of the essence and the

elegance of the finite element method. Completely missing from this description is the

data structures of the matrices and the detailed instruction sets for the operations, say the

* in N*a (see Step 2.1). The symbols N, B, and D are concepts whose functions are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

clearly defined; what they represent are known except how they are implemented is a detail

hidden at this level. The above description of the finite element method shows that the

method is clearly described without any low level instructions. However, the instructions

made up of low level abstractions provided by a programming language, i.e., the basic

constructs of the language, make up almost the entire code in current finite element pro­

grams.

4.2.2. Current State of Teaching the Finite Element Method

One can use a finite element program without understanding the details of the method, but

here lies the danger of misinterpreting the results from the program. The past three

decades have produced enthusiasm in researchers working on the understanding and the

development of the finite element method; as a result, the method has gained scientific

backing and a wide usage in diverse areas. However, less attention has been given to

effective teaching of the total method to a wide audience of engineers from diverse back­

grounds. Appropriate use of finite element programs requires understanding of the basics

of the method. In addition, educators must also enable students to write correct finite ele­

ment programs.

A t a university level, an instructor attempts to stimulate creativity and innovations both in

the definition of new problems classes and in the search for their solutions [Taylor 87]. To

achieve this when the subject is the finite element method is a challenging task partly

because the subject matter requires background knowledge from diverse areas of engineer­

ing, which include:

1. Physics of the field (structural engineering, fluid mechanics, heat transfer, etc.);

2. Numerical methods (equation solving, numerical integration, numerical interpola­

tion, etc.); and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

3. Computer fundamentals (programming principles, a programming language, an

operating system, etc.)*

An instructor cannot assume that all students have the necessary background, but all the

materials cannot be taught in a finite element course either. Because of this, the finite ele­

ment method is still taught mainly at a graduate level in most engineering departments

despite the need to reach a wider audience.

The basic theories behind the finite element method can be taught using a textbook or

class notes. However, the finite element method is a computer based method of analysis

and many aspects need demonstration on a computer to convince a student that they can

implement the theory into working programs. Thus, essential parts of a finite element

course are studying finite element programs and actual coding. However, there does not

seem to be an effective way of including this into a finite element course. Some instructors

use assignments that require running sample problems on well known finite element codes

such as ANSYS [Kohnke 1979] and NASTRAN [Mclean 81; NASA 79]. These assign­

ments, however, are ineffective because one can do them without understanding the

method; one only needs to understand how to prepare the input data which can be learned

by reading the program manuals. Other instructors who acknowledge this problem design

assignments where the student must code a portion that is to be integrated with the rest of

a finite element program. The portion generally is a subroutine or a segment in a subrou­

tine where the theory is covered in the class. This type of assignment seems more challeng­

ing than running sample problems but it is still not totally effective. Most finite element

codes are written in Fortran where the program consists of many subroutines and the com­

plex network of information is shared among subroutines through common arrays and sub­

routine arguments. In order to write a portion of a finite element code, the student still

has to know quite a bit about the rest of the program. This requires weaving through the

arrays, the arguments, and other parts of the code which the student may not be ready to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

comprehend.

In structural engineering, SAP (Structural Analysis Program) [Wilson 70], STRUDL

(STRUctural Design Language) [Logcher 71], and FEAP (Finite Element Analysis Pro­

gram) [Taylor 77] were started partly as instructional tools and have been widely used in

educational environments for many year. McAUTO-STRUDL and GT-STRUDL, which

are derivatives of the original STRUDL, have become successful commercial products.

The latest version of SAP, SAP-90 [Wilson 90], is also a viable commercial product where

many recent numerical methods have been incorporated. FEAP is used widely in research

institutions around the world and many modern elements and nonlinear algorithms have

been first tested in this program. However, these programs as teaching tools at the source

code level do not address the issues discussed above. In general, academia in engineering

emphasize efficiency of calculations and do not stress factors which software professionals

consider important (such as, user convenience, cost of development and maintenance).

Abstracting relevant concepts from the whole picture of the finite element method is impor­

tant for effective instruction. However, this is extremely difficult with a conventional pro­

cedural program. Object oriented programming with its powerful means of abstraction can

dramatically improve finite element codes in this respect. Examples are shown in Section

4.3.2.

4.3. Object Oriented Development of Finite Element Programs

The main purpose of programming paradigms and style is to produce clear, modular and

structured programs so that development and maintenance of these codes are efficient.

The guidelines provided in this section are to fulfill this purpose for C+ + engineering pro­

grams and they should be considered as additions to existing good styles of programming

that are necessary to develop today’s much larger engineering systems (see Section 3.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

4.3.1. General Guidelines for Object Oriented Development

Support for an object oriented paradigm in C+ + offers elegant abstraction and code reuse

techniques that are useful in large engineering projects.

Abstraction is the essence of all computer programming. From a machine language to an

assembly language, and from an assembly language to a general purpose language, higher

levels of abstraction allow application programmers to write programs that are comprehensi­

ble. Since an application programmer does not deal with the machine or the assembly

language, the lowest level of abstraction is the basic constructs in the programming

language. For decades, engineers produced codes that are based only on this level. Com­

plexity increases as a system becomes larger and for these systems higher levels of abstrac­

tion that correspond to the familiar concepts in the application domain must be reflected in

the source code.

Today’s engineering programs become modules in a large system where they have to

interact with other resources in a changing environment. A program’s interface with other

resources must be based on general conceptual entities in the application domain where the

specific formats of input and output data must be flexible, i.e., easily modifiable.

Programmers no longer build an entire program with the basic constructs in the language.

Instead, components from previous projects and modules written by other programmers are

reused. Reuse of code reduces development costs by exploiting the existing resources. In a

C+ + object oriented paradigm, the source of reusable code is the method definitions of

classes that are in compiled form. This provides effective means of maintenance because

codes that are tested (existing codes) are not altered and the system can be maintained pri­

marily by additional coding.

A guideline for object oriented development of C+ + engineering software based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

1. Levels of abstraction

2. Reusability of classes

is proposed.

4 .3 .I.I. Levels of Abstraction

Object oriented concepts are built upon the ideas developed for structured programming.

In a structured program, effectively organizing an application’s functions is important

where these functions are transformed to procedural codes. In an object oriented program,

an application must be organized with objects, where functions and data are encapsulated.

In engineering, complexity is often simplified by perceiving the problem at various levels of

abstraction. Analysis of a project entails identifying these levels. A t each level there are

classes (concepts) and objects with the right amount of detail that are used to arrive at a

part of a solution. An object oriented engineering program must be designed so that these

levels of abstraction are clearly identified in the source code. This is important for clarity

of the program and in this respect, operator overloading plays a major role. As an

independent module, the program must be versatile where the interface with other

resources in the computer system can be established at any level of abstraction.

Defining classes is a major part of coding in C+ + . When there is a concrete concept, an

invariant that is not short-lived, make it a class. When there is an identifiable entity, a

project specific element, make it an object of some class. If two classes have something

significantly in common, make that a base class; it will become more reusable in the

future. When designing classes, do not use global data, global functions, or public data;

this defeats the encapsulation and data hiding purposes.

An outline of the procedure for an object oriented development of C + + engineering

software based on levels of abstraction is given below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

1. Identify the levels of abstraction in the project (Top level, Intermediate

level, etc.).

2. Abstract general concepts that will become C + + classes for each level

defined in Step 1.

3. Determine the class methods that are used as part of the interface for the

entire program and the class methods that are for interaction among

objects inside the program.

4. For the classes identified in Step 2, see if there are any classes in the class

library that are similar. Reuse the similar classes (see Section 4.3.I.2.).

5. Define and code new classes.

6. Code relevant algorithms for each level of abstraction identified in Step 1

using objects that are instances of classes defined in steps 4 and 5.

As discussed in Section 3.2.1, the five stages of software development are: 1. Specify

requirements, 2. Design, 3. Coding, 4. Testing, and 5. Delivery. In the above procedure,

steps 1, 2 and 3 correspond to the design stage and steps 4, 5 and 6 constitute the coding

stage. If proven and familiar algorithms are used, only class definitions need to be

thoroughly tested.

4.3.I.2. Class Library and Reusability

C+ + allows one to clearly organize programs. By designing classes with well-defined

interfaces the risk of system wide bugs are minimized. The declarations of classes, which

are the user interfaces for the classes, should be placed in header files. The method defini­

tions, which are the implementation details of the classes, should be compiled and placed

in files with restricted access.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

A C + + programmer must build a library of classes. Most engineering programmers

already have useful subroutines and functions that are written in C or Fortran. These

codes, which can become definitions of methods without modification, should be the start­

ing point of building an engineering C + + class library. Pure object oriented program­

ming supporters advocate forming a single inheritance hierarchy of all the classes in the

library; this is not necessary. Organizing classes into hierarchical categories similar to the

UNIX file system, however, is useful for access purposes.

General C+ + classes are included with compilers [Zortech 89] and some disciplines have

public-domain C+ + routines. For example, NIH (National Institute of Health) provides

health related C + + routines available to the public [Ladd 90]. Class libraries related to

engineering are most likely to be developed as an individual’s or an organization’s

proprietary code.

A Class library is the source of reusable codes in C+ + . Wherever possible, these codes

must be used to avoid re-invention. Tested code enters the class library and must be used

without modification. When developing new classes for a project, reusability must be

emphasized. Classes archived in the library should not be project-specific, but be abstrac­

tions of invariant concepts in the application domain of the project. Project-specific classes

should be derived from the classes in the library.

A class library is much more versatile and powerful than the function libraries of C or For­

tran. Like library functions, classes in the library must be used without modification.

However, these classes can be the bases of derived classes that accommodate a wide range

of specific requirements of different projects and changing user requirements during the

maintenance of the projects. Using inheritance and polymorphism, the additional coding

for derived classes can be minimized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

The four types of inheritance relationships (see Chapter 2, Section 2.3.1.1.) may be coded

as follows in C+ + (the small letter words are C+ + key words, the capital letter words are

class names, and text after / / are comments):

1. Specialization (a CONCRETE_BEAM is a kind of BEAM):

c l a s s BEAM (. . . //BEAM p r o p e r t i e s 1;
c l a s s CONCRETE_BEAM: p u b l i c BEAM

{ . . . / / s p e c i a l CONCRETE p r o p e r t i e s 1;

2. Modification (a BLUE_BEAM is like a RED_BEAM except the color):

c l a s s RED_BEAM { . . . p u b l i c : v o i d c o l o r O ; / / r e t u r n REO 1;
c l a s s BLUE_BEAM: p u b l i c RED_BEAM

{ p u b l i c : v o i d c o l o r () ; / / r e t u r n BLUE};

3. Extension (a BEAM_COLUMN has a BEAM’S and other additional features):

c l a s s BEAM { . . . //BEAM p r o p e r t i e s };
c l a s s BEAM_COLUMN: p u b l i c BEAM

{ . . . / / a d d i t i o n a l COLUMN p r o p e r t i e s };

4. Aggregation (a FLOOR is made up of BEAMs, GIROERs and SLABs);

c l a s s BEAM { . . . //BEAM p r o p e r t i e s };
c l a s s GIRDER! . . . / /GIRDER p r o p e r t i e s] ;
c l a s s SLAB ! . . . / /SLAB p r o p e r t i e s };
c l a s s FLOOR

{ BEAM BEAM_object ;

GIRDER GIRDER_object ;
SLAB SLAB_object ;

. . . / / o t h e r FLOOR p r o p e r t i e s 1;

Multiple inheritance is supported in C + + ; if a BEAM_COLUMN is a BEAM and also a

COLUMN, this can be coded as,

cI a s s BEAM { . . . } ;

c l a s s COLUMN { . . . } ;

c l a s s BEAM_COLUMN: p u b l i c BEAM, p u b l i c COLUMN ! . . . } ;

Virtual methods provide the means of polymorphism in C+ + . When a method is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62

declared virtual in a class, definitions must be provided only by the derived classes. How­

ever, the declaration of a virtual method in the base class has enough information - the

method name and the types of arguments - to uniformly treat various objects from different

derived classes. Virtual methods are bound at run time in C+ + and if run time efficiency

is critical, these methods should be avoided.

Each derived class provides a different definition of the virtual method declared in the

base class. If there are common features to be shared by all the definitions, then a separate

method should be defined in the base class that contains these features. This method

should be invoked by each definition of the virtual method. The following code shows an

example:

c l a s s SHAPE { . . . p u b l i c : . . .
v i r t u a l v o i d d r a u O ; / / d r a u O d e c l a r e d v i r t u a l
v o i d SHAPE_drau 0 ; / /common f e a t u r e s o f d r awl) 1;

c l a s s CIRCLE: p u b l i c SHAPE (. . . p u b l i c : . . .
vo i d draw 0 ; 1 ;

v o i d CIRCLE:: draw 0 1 . . . / /C IR C LE’ S d e f i n i t i o n o f draw

SHAPE_drawC); / / c o m m o n f e a t u r e s o f d r a w l) 1;

There are still unresolved ambiguities in the scope of names in a derived class when multi­

ple inheritance, global variables, and virtual methods are intricately intertwined and the

programmer is advised to be cautious in choosing names in such situations.

In C+ + , the class definition of an object cannot be changed after the object is initially

constructed; that is, given an object, there can only be one class definition throughout its

existence. Also, a class is not an object in C+ + . These are the limitations of the object

oriented programming model adopted for C + + and they are due to execution time effi­

ciency considerations. However, many features offered by more pure object oriented pro­

gramming models that allow an object’s class to change are not that important in engineer­

ing program development. Such features are an object’s capability to receive or relinquish

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

instance variables or methods. Other features can be simulated with inheritance mechan­

isms in C+ + ; for example, partial inheritance can be simulated with a modification type

of inheritance if the part to be inherited is known at compile time.

4.3.2. An Object Oriented Program for Finite Element Instruction

OPFI (Object oriented Program for Finite element Instruction) is an object oriented C+ +

program for linear finite element analysis using isoparametric elements. The program is

intended for instruction on finite element programming and on behavior of finite elements.

OPFI is a general purpose finite element program where the user specifies element charac­

teristics - B matrix, D matrix, Shape functions, and Gauss points and weights for numerical

integration - in addition to other finite element input data. The element characteristics are

conceptual entities that are developed as classes and data that determine the specific

characteristics of the objects are input from the users. In conventional finite element pro­

grams, a user selects elements from the element library supported by the program; the user

can input the parameters defined by the element but cannot alter any characteristic (B

matrix, D matrix, shape functions, etc.) of the element.

The ability where a student can input the data that define element characteristics allows the

student to leam the behavior of elements effectively. The source code of OPFI reflects

many familiar algorithms used in the finite element method at various levels of abstraction

and this can assist students to leam more quickly the details of finite element code

development.

The rest of this section shows the object oriented development of OPFI and outlines how

OPFI can be extended for dynamic analysis. The guideline follows the steps outlined in

Section 4.3.1.1 and the extensibility is described in terms of reusability of classes that is

elaborated in Section 4.3.1.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

The declarations of the classes used in OPFI are included in the Appendix. The detailed

workings of OPFI are not essential in describing the object oriented development of the

program and are not included in this dissertation. However, the users manual, sample

problems in elasticity, and a complete listing of the program OPFI may be found in refer­

ence [Yoon 89].

4.3.2.I. Levels of Abstraction in a Finite Element Displacement Formulation

The general procedure outlined in Section 4.3.1.1 for an object oriented development of

engineering software is adhered to in the following discussion.

1. Identify the levels o f abstraction.

The finite element displacement formulation described in Section 4.2.1 identifies two levels

of abstraction:

1. Top level: Steps 1 through 5 (see Section 4.2.1).

2. Intermediate level: Steps 2.1 through 2.4 (See Section 4.2.1).

2. Abstract general concepts that will become classes.

The classes that represent concepts in the top level are described below (Italic words are

class names and capital letters in parentheses are object names; see the Appendix for the

declarations of the classes):

1. input (I): Reads the input data. The object in this class reads the conven­

tional finite element data such as joint coordinates and element incidences.

2. g s t i f (K) : Generates the global stiffness matrix, K.

3. estif { E): Generates element stiffness matrices, ke .

4. output (0): Outputs the requested results

The classes that represent concepts in the intermediate level are described below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

1. Gpoint (G): Generates the data for the Gaussian quadrature.

2. Dmat (D): Reads entries of the D matrix and computes numeric values.

3. Bmat (B): Reads entries of the B matrix and computes numeric values.

4. Shape (Shp): Reads the nodal shape functions.

5. Stress (S): Computes stress matrices from D*B.

6 . Stif_mat (eK, gK): Stores element stiffness matrix which is formed from a

numerical integration of Br *D*B over the element domain, Sle.

The objects in the classes Gpoint, Dmat, Bmat and Shape require input data from the user

that determine the characteristics of the element used in the finite element analysis.

3. Determine the objects that are used as part o f the program's interface.

At the top level, the objects I and 0 are used for the program’s input/output relation. At

the intermediate level, the objects G, 0 , B, and Shp are used for the program’s

input/output relation.

4. Reuse o f classes

OPFI was developed from scratch so initially the class library was empty. The existing

code used in OPFI is a Fortran equation solver. Many Fortran equation solvers are effi­

cient and well tested. These routines should be used in finite element programs and others

that require solving systems of equations. Integration of a Fortran subroutine into a C+ +

program is straight forward. In OPFI, the solve method of the class gstif (global stiffness)

calls a Fortran equation solver after arranging the load vector and the coefficient matrix

into a form that is consistent with what is required by the Fortran routine.

5. Define and code new classes

The definitions of classes used in OPFI may be found in [Yoon 89].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

6. Code relevant algorithms for each level o f abstraction.

After the objects are instanced, the code that represents steps 1 - 5 of the top level of

abstraction is shown below:

i n p u t 1 0 ; / / S t e p 1: i n p u t

f o r (i n t i = l ; i < = n e l ; i + +) ! E . f o r m (i) ; / / S t e p 2 : d i r e c t s t i f f n e s s

K = K + E; 1

K. l o a d O ; / / S t e p 3: form lo a d v e c t o r

K. s o l v e d ; / / S t e p 4: s o l v e Ka = l o a d

0 . d i s p l a y !) ; / / S t e p 5: d i s p l a y r e s u l t s

The codes for steps 1, 3, 4, and 5 are exact matches. Step 2 represents the direct stiffness

method, a procedure well known to the professionals in this domain. The two lines of

code that represent Step 2 concisely state the direct stiffness algorithm: form the stiffness for

elment i{ E . f o r m (i) }, add the element stiffness to the the global stiffness { K = K +

E }, and repeat for all the elements { f o r (i n t i =1; i <= n e I ; i ++) }. The + in Step 2

is a good example of an overloaded operator that clarifies code.

Step 2.4 in the intermediate level of abstraction is the integration of Br *D*B over Sle . The

code that represents this step is shown on the next page:

/ / COMPUTATION OF eK = GAUSS INTEGRATION OF (BAt) *D *B

f o r (i = l ; i < = G . p o i n t s 0 ; i+ +) ! / / LOOP OVER GAUSS POINTS

B. f o r m (G , i)

S t r e s s S = (D*B)

S . s t o r e !)

S = S * (G . u t (i) * B . j a c o b i a n 0)

B . t r a n s ()

S t i f _ m a t gK = (B*S)

eK = eK + gK

/ / FORM B MATRIX

/ / FORM S MATRIX

/ / SAVE S MATRIX

/ / S=S*UIEIGHT*JACOBIAN

/ / FORM B TRANSPOSED

/ / FORM gK=B~t*S

1 / / ADD gk TO eK, END LOOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

The above code outlines the algorithm for a Gaussian numerical integration of Br *D*B

over the domain Cle . This is a familiar algorithm and it is how integration is generally

computed on computer. A t this slightly lower level of abstraction, some detail in coding is

present. Codes from even lower levels of abstraction, e. g., the code for multiplying B and

S (B*S), contain the details of the data structures of the objects and basic constructs of

the C+ + language.

Object oriented programming techniques are versatile but their abuse can produce complex

and cryptic programs. However, when the techniques are utilized with disciplined style

and organization, the codes generated are modular and structured; the clarity of the codes

is only limited by the imagination of the programmer.

4.3.2.2. Extension for Dynamic Analysis.

OPFI is a static finite element analysis program but many classes defined in OPFI can be

reused as is or as base classes for a dynamic finite element analysis program. This is

expected since static analysis is conceptually a part of dynamic analysis. Extending OPFI

for dynamic analysis is the subject of this section. An example of levels of abstraction

clearly reflected in the source code was shown with OPFI in Section 4.3.2.1. This section

shows examples of the reusability of classes in an object oriented development of engineer­

ing software; actual coding is not included.

The Equations o f Dynamic Equilibrium :

The equations of equilibrium governing the dynamic response of a system of finite ele­

ments can be expressed as

M if + K u = F(r)

where M and K are the mass and stiffness matrices; F is the time dependent external load

vector; and u and u are the acceleration and displacement vectors of the finite element

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

assemblage. For simplicity, the damping effect (commonly denoted with C u) is assumed

negligible.

Solution Methods :

The numerical solution methods for the response of structural systems subjected to dynamic

loads can be grouped into two broad classes according to the solution space employed

[Belytschko 83; Clough 75; Bathe 82]:

1. Time domain solution methods; and

2. Frequency domain solution methods.

The time domain solution methods operate directly on the equations of equilibrium, deter­

mining the response at discrete time steps A, and may be used for linear and nonlinear

problems. The frequency domain solution methods operate in a transformed domain,

using Fourier Transforms, and are restricted to linear systems.

The time domain solution methods are also called step-by-step direct integration methods

and some of the common time domain solution methods are the following : Newmark’s

method, Wilson’s 0 method, finite difference methods, Euler’s method, and Runge-Kutta

type methods. In structural engineering, Newmark’s method has been found to yield good

results with relatively little computational effort and this method is considered in the fol­

lowing presentation. Discussion on the merits of Newmark’s and other methods are

beyond the scope of this presentation; Newmark’s method is chosen only because it is con­

ceptually simple but sufficient to address the programming aspect of the general time

domain solution methods of finite elment systems.

Step-by-step Integration, Newmark’s Method :

The algorithm for Newmark’s method in a predictor-corrector form is outlined below [New-

mark 59; Belytschko 83]. The subscript denotes the value of time. The displacement,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

velocity and acceleration at time T are denoted by ur , ur and ur respectively.

1. The initial values of dispacement and velocity (uo and uq) are known and the ini­

tial value of acceleration (iio) is computed from the equilibrium

1.1 .
M ii0 = F0 - K uq

A , A
2. The predictor formulas for the displacement and velocity (ur + a and ur + A) for

time T = 0, A, 2 A, 3 A, ... are given by the following :

2 .1.

“r + a = ur + A “r + (J ~ ^) A2 “V

2 .2 .
ur + A = ur + (1 - 7) A iir

3. The corrector formulas for the displacement, velocity and acceleration (ur + A,

ur + A and iir + A) for time T = 0, A, 2 A, 3 A, are given by the following:

3.1.

(K + T T T M) ur + A = Fr + A + t ^72 m ur + A

3.2.

_1 _
p Az

• • 1■ r A \
u r + a - „ I u r + a ~ u r + a 1

3.3.

“ r + A — “ r + A + (Ur + A ~ Ur + A)

4. Set the time T = T + A and go to step 2.

In Newmark’s method, (3 and y are the free parameters and the particular choices for these

parameters correspond to different methods; for example, the choices 3 = 7 - and 7 = 7 -
6 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

correspond to the linear acceleration method, which is conditionally stable, and the choices

(3 = j- and 7 = 5 - correspond to the average constant acceleration method, which is

unconditionally stable for linear problems.

A Finite Element Formulation :

A formulation for the linear dynamic response of a finite element system using Newmark’s

method with (3 = j- and 7 = is presented below. The steps are organized so that the

similarities with and the differences from the formulation for the static analysis given in

Section 4.2.1 for OPFI are accentuated (same notations are used).

1. Input the data defining geometry, elements, boundary conditions, initial condi­

tions (uq and u0), time step (A), and time dependent load (Fr for T = 0 , A, 2 A,

3 A. . .) .

2. Assemble the element stiffnesses ke into the global stiffness K,

K =

where

2.1
ke = f n BT * D * B dV

3. Assemble the element masses me into the global mass M,

M = 2 m e

where

3.1
me = f a P Nr * N dV

4. Form the effective stiffness K,

K = K + (M * (A -))A L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

5. Factorize K and M where the original forms of the matrices are not lost.

6. Obtain u*o by solving

M u’o = F0 — (K * u0)

7. Initialize the value of time T — 0.

8 . For each time step, compute the displacement and velocity (u7+ A and u7+ A)

with the following steps:

8.1 The values of u7 , u7 , u7 , and F7+ A are known.

8.2 Compute u7 + A, the displacement predictor, given by

u7 + A = u7 + (u7 * A) + (ii7 * (0.25 * (A2)))
. A

8.3 Compute u7 + A, the velocity predictor, given by

u7 + A = u7 + (u7 * (0.5 * A))

8.4 Compute the corrected displacement, u7 + A, by solving

K u r + 4 = F r + 4 + ((M V + i) * (4 -))hr

8.5 Compute the acceleration, u7 + A, given by

“Y + a — (Ur + A ~ u r + A) * (T z)
_4
A2

8 .6 Compute the corrected velocity, u7 + A, given by

u7 + A = u7 + A + ((u7 + A - u7 + A) * (| -))

8.7 Output the displacement and velocity at time T + A (u7+ A and

“ r + A)•

8 .8 If the response at the end of next time step is desired, set

T = T + A and go to step 8.1.

In the above steps, note that an object of a user defined type always precedes an over­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

loaded operator; for example, it is written uT * 3 and not 3 * u7 . The object that pre­

cedes an operator is the receiver of the message and in C + + overloaded operators can be

defined only by classes and not for built in types.

Reusability o f Classes :

The classes that must be defined in each step of the formulation are described below. The

classes related to the finite element method are from or derived from the classes used in

OPFI. Using inheritance mechanisms, the coding for the derived classes is just limited to

patch the differences. The new classes that need to be defined for the dynamic analysis are

vector and matrix', these classes must capture the mathematical concept of vector and matrix

so that they become reusable classes for other applications such as different step-by-step

solution methods that may be programmed with minimal effort in the future.

Class for Step 1: The input data for the extended program is made up of the data for

OPFI and some additional data for dynamic analysis. Thus the dynamic-input

class can be derived from OPFI’s input class where the extension type of inheri­

tance can be used to accommodate the data for initial conditions, time dependent

load, time step, and number of time steps.

Classes for steps 2 and 2.1: The class for the object ke is OPFI’s estif (element stiff­

ness). The base class for the object K is OPFI’s gstif (global stiffness). The new

derived class for K, call it d-gstif, must support three new methods: matrices

addition { K + M }, matrix-vector multiplication { K * u }, and matrix-scalar

4
multiplication { M * () }• A good strategy is to inherit these matrix proper­

ties from the generic matrix (described below) class using multiple inheritance so

that the gstif from OPFI does not have to be altered and the derived d-gstif can

be uniformly treated as matrix in other parts of the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

Gasses for steps 3 and 3.1: The class for object me , emass (element mass), can be

derived from Gpoint (Gauss points), Bmat (B matrix), Dmat (D matrix) and

Shape (Shape functions) classes that were used to derive the estif class in OPFI.

The class for the object M, gmass (global mass), should be derived from the

matrix class and support matrix addition { K + M }, matrix-constant multipli­

cation { M * 6 }, matrix-vector multiplication { M * u }, factorization and solu­

tion. The derived properties of gmass include an operation for assembling the me

using an algorithm identical to the direct stiffness method.

Gasses for steps 4 through 8 : The objects in steps 4 through 8 are instances of classes

already described. The object K is a d-gstif and u , u , ii , and F with subscripts

are all vectors. A new output class to collect all the responses at each time step

for post processing by another module may be defined. However, if only the dis­

placement is output as it is computed, the output class from OPFI can be used.

Gass vector: The vector class for this program can be defined as a vector whose ele­

ments are real numbers. Three binary operations must be supported: the *

operation where the argument is a scalar, the + operation where the argument is

a vector and the — operation where the argument is a vector. Objects which are

instances of vector may become arguments to other operations where the defini­

tions of the operations are the implementation details of the message receiver.

The access methods for elements in a vector must be efficient and versatile; for

example, in many cases only few elements in a vector are non zero and efficient

methods that return only these values and locations are needed in order to imple­

ment efficient operations that take these vectors as arguments. If the reusability

of the vector class in the future is desired, the full mathematical concept of vector

used in engineering must be implemented which includes methods for: 1 . vector

product yielding a matrix and 2 . scalar product of two vectors yielding a scalar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

Also, a generic vector (a vector where the type of its elements can be user

defined) is useful if vectors of varying types are needed.

Class matrix". The matrix class is needed as the base class to treat the objects K, M and

K uniformly as matrix in the specification of the algorithm for Newmark’s

method. Thus, matrices addition, matrices subtraction, matrix-constant multipli­

cation, matrix-vector multiplication, matrix factorization and solve operations

must be supported. The derived classes d-gstif and gmass define the implementa­

tion details of the data structures; this is important because the matrices con­

cerned are sparse, and mechanisms for storing only the non-zero elements are

implemented at the derived class level. A t the matrix level, the objects may be

conveniently viewed as a square matrix that fully encapsulates the mathematical

concept of a matrix. In C+ + , this can be implemented by declaring the full set

of methods at the matrix level and declare those that depend on the implementa­

tion details of the data structures as virtual. The definitions of the virtual

methods can be coded later at the derived class level.

Based on an object oriented finite element program that was developed as a teaching tool

using the C + + language, this chapter presented a general guideline for object oriented

development of engineering software. The guideline is based on levels of abstraction,

which exist in most engineering problems. A substantial portion of the code produced fol­

lowing the guideline seems to be reusable in compiled form.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5

AN OBJECT ORIENTED DATA MODEL
FOR ENGINEERING DATABASES

5.1. Introduction

This chapter review’s database concepts and proposes an object oriented data model for

engineering databases.

The central database for integrated structural engineering systems is most likely an object

oriented database [Powell 8 8a]. Research continues on a number of object oriented data

models that share several features (see references [Fenves 89b; Kim 89; King 8 6 ; Lecluse

8 8 ; Lyngbaek 8 6]); many of these models are tied to the object oriented database that is

built to support a specific application (e.g., integrated office systems, support for an object

oriented programming environment, CAD, expert systems) but a general model or one

suitable for engineering applications has not emerged yet.

5.2. Review of Database and Data Models

Computer science writers do not agree on how the term database should be written; some

use it as one word as in this dissertation, some hyphenate the term (data-base), and others

divide it into two words (data base). However, database systems have become an esta­

blished field in the study of computer science with basic concepts. These concepts are

reviewed in Section 5.2.1. Data models are treated separately in Section 5.2.2; traditional

data models - the network, hierarchical, and relational models - are presented in Section

5.2.2.1 and some data model issues for engineering data are discussed in Section 5.2.2.2.

Section 5.2.3 describes object oriented databases.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

5.2.1. Basic Database Concepts and Terminology

A database is a collection of stored operational data used by the application system of some

enterprise. Enterprise is simply any reasonably large-scale commercial, scientific, technical

or other operation. Any enterprise must maintain a lot of data about its operation and this

is its operational data. Input and output data, which are transient, by themselves are not

operational data [Date 83].

In general, operational data include some basic entities and relationships between these

entities. It is important to note that relationships themselves can be entities and different

ways of treating them produce different data models. The operational data stored in an

integrated database provide the enterprise with centralized control of its operational data.

The following list identifies the advantages that accrue from centralized control of the data:

1. The amount of redundancy in the stored data can be reduced.

2. Problems of inconsistency in the stored data can be avoided. If conflicting

requirements exist, unbiased balance can be imposed.

3. The stored data can be shared among many users.

4. Standards can be enforced. This can simplify maintenance and data exchange

with external enterprises.

5. Security restrictions can be selectively applied.

6 . Data integrity can be maintained; i.e., the data values stored in the database must

satisfy certain types of consistency constraints. In engineering, these constraints

are generally physical; for example, data that represent volume, area or length

cannot be negative.

7. Data independence can be provided; i.e., the organization and access strategy of

data are not dependent on application modules. If a change in the organization of

data or a better access strategy is implemented in the database, the application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

modules are not affected.

Each user has some workspace and a language at his disposal. The language usually is a

high level language such as FORTRAN, C or C+ + . The users’ language includes a data

manipulation language (DML), which is that subset of the language for transferring data

between the data model and the workspace. A data model defines a set of data structures

and operations which can be used for storage and manipulation of data objects in the data­

base.

The DML usually includes syntax for the following:

1. The retrieval of information stored in the database.

2. The insertion of new information into the database.

3. The deletion of information from the database.

There are basically two types of DML: procedural, which requires a user to specify what

data are needed and how to get them, and nonprocedural, which requires a user to specify

what data are needed, without specifying how to get them.

A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval is called the query language. Although technically incorrect,

it is common practice to use the terms query language and data manipulation language

synonymously. In some older texts, data sublanguage (DSL) is used instead of a data

manipulation language. Some query languages are more than a data manipulation

language. These include part of the language that is appropriately called a data definition

language (DDL). A data definition language is a special language where a database schema

is specified by a set of definitions.

A database schema (called database scheme in some texts such as reference [Korth 8 6]) is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

the overall design of the database. The collection of information stored in the database at

a particular instant of time is called an instance of the database. The notion of type defini­

tion in programming languages corresponds to the concept of database schema. The notion

of value o f a variable o f a given type corresponds to the concept of database instance.

There are several schemas in the database and based on the abstraction provided, they are

divided into the following levels:

1. Physical Level: Describes how the data are actually stored in the database. This

level need not concern application programmers.

2. Conceptual Level: Describes what data are stored in the database. This level is

used by the database administrator (DBA), the one who decides what information

is to be kept in the database.

3. View Level: This is the top level of abstraction where most of the unnecessary

details are hidden. This level is used by application programmers.

An index is a special kind of stored file in the database where each entry consists of two

values: a data value for some field of the indexed file and a pointer to a record of that file

that contains the corresponding value. Index is primarily to speed up retrieval of data

items in the database. Since it is not efficient to index all fields, the database administra­

tor has to select which fields to index based on expected retrieval requests from users.

Applications usually deal with models that are not mapped directly to the data model but

that are abstractions of the data model. Generally, these models are called abstraction

models or views.

The database management system (DBMS) is the software which handles all access to the

database. Any access request from a user is intercepted by the DBMS, which inspects the

data model and then performs the necessary operations on the physical database. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

DBMS is also responsible for applying the authorization checks and validation procedures.

In a simple case, each user’s workspace acts as the receiving or transmitting area for all

data transferred between the user and the database. In a more intricate case, such as in an

integrated structural engineering system, the flow of data among program modules and the

database has to be controlled. In civil engineering systems, four main approaches have

been used:

1. Central Database Approach: The database is central to all applications and access

is controlled by the DBMS. Application modules interact with the DBMS and

interaction among the modules is through the database. This approach was used

in NICE (Network of Interactive Computational Elements) [Felippa 81].

2. Coupled Database Approach: Program modules interact with a local database

which is linked to the central database. Individual application modules can view

the local database as if it is the central database and thus the database manage­

ment system must provide location transparency to users; i.e., to a user, the

location(local or central) of data is hidden. Coupled database is similar to distri­

buted database systems [Stonebraker 83].

3. Superexecutive Approach: An executive program controls the flow of data

between the application modules and the database. The executive program can

assume some of the functions traditionally assigned to the DBMS. This approach

was used in ICES (Integrated Civil Engineering System) [Roos 67].

4. Blackboard Approach : The program modules communicate data among them­

selves through the blackboard and also through the database. There is no direct

link between the blackboard and the database [Fenves(S) 8 8].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

5.2.2. Data Models

A data model is a collection of conceptual tools for describing data, data relationships, data

semantics, data organization, and consistency constraints. Associated with a data model is

DDL (Data Definition Language), which the DBA (Database Administrator) uses for

defining database schema and DML (Data Manipulation Language) which users utilize to

access the database.

Data models can be grouped into object-based logical models and record-based logical

models. Object-based logical models provide flexible structuring capabilities and allow one

to specify data constraints explicitly. Record-based logical models require specification of

both the overall logical structure of the database and a higher-level description of the

implementation; however, record-based logical models do not provide facilities for specify­

ing data constraints explicitly [Korth 8 6].

The network, hierarchical, and relational data models are record-based logical models that

have been widely used. The relational model is the model of the 1980s. The network and

hierarchical models were popular in the 1960s and 1970s.

5.2.2.I. Network, Hierarchical, and Relational Models

Network Model

Data in the network model are represented by collections of records and links. A record is a

collection of fields, each of which contains only one data value. A link represents a rela­

tionship between two records. In the network model, the links between records can form

an arbitrary network or graph. This provides flexibility as a many-to-many (generally,

there are one-to-one, one-to-many and many-to-many types of relationships) type of rela­

tionships can be modeled directly. However, the resulting network tends to be cumbersome

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

and for this reason it is not widely used now. In addition, the associated DML(Data

Manipulation Language) is procedural and the user has to know the details of the network.

In the late 1960s, several commercial database systems based on the network model

emerged. These systems were studied extensively by the Database Task Group (DBTG)

within the CODASYL (Conference on Data System Languages) group that earlier set the

standard for COBOL. This study has resulted in the first database standard specification,

called the CODASYL DBTG 1971 report [CODASYL 1971].

Hierarchical Model

Data in the hierarchical model are represented by collections of records and links, similar

to that used in the network model. The hierarchical model differs from the network model

in that records are organized as collections of trees. The associated DML is procedural and

a retrieval has to follow the rigid hierarchy where each record can have one parent and a

number of children records. Some structural engineering data are naturally hierarchical

[Nicklin 87].

The most influential database system based on the hierarchical model is the Information

Management System (IMS) developed in the late 1960s by IBM and Rockwell International

for the Apollo moon landing program [IBM 78]. The hierarchical model was widely used

until efficient implementations of relational databases became available in the early 1980s.

Network and Hierarchical data models do not provide independence between the data

model and how the model is physically implemented. In the network model, operations

are constrained to follow strict paths defined by the links and generally the links in the

data model correspond to physical links implemented in the database. In the hierarchical

model, the relationship between records must be an ordered tree, i.e., hierarchical. This is

advantageous if the natural relationships among the records is hierarchical but when they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

are not, the concocted hierarchical model of data produces redundancy and hence a possi­

bility of inconsistency.

Relational Model

The relational model represents the database as a collection of tables [Codd 70]. Each table

is assigned a unique name. A record, or row, in a table represents a relationship among a

set of values. Given a table, each field, or column, has a unique name within the table

and data type (integer, real, characters, etc.). Although tables are an intuitive notion,

there is a direct correspondence between the concept of table and the mathematical concept

of relation, from which the relational data model takes its name.

Tables in the relational model must have the following properties:

1. No two records in a table are identical. Each table has a primary key which is

made up of one or more fields in a record and the value of the primary is used to

distinguish different rows.

2. The ordering of records is arbitrary.

3. The ordering of fields is arbitrary. This is because a field is referred to by field

name and not by relative position.

4. Every field within a relation is an atomic (nondecomposable) data item.

The DML for the relational model can be procedural or nonprocedural. The procedural

language is based on relational algebra which includes five fundamental operations: select,

project, Cartesian product, union, and set-difference. All of these operations produce a

new relation as their result so operations can generally be applied to the result of an opera­

tion. The relational algebra is a procedural language because the user has to provide a

sequence of operations that generates the answer to a query. The nonprocedural language

is based on relational calculus. The relational calculus can be thought of as a notation for

expressing the definition of a relation which is to be derived from the data model. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

theoretical foundation based on relational algebra and calculus on which the relational

model is based is a major strength of the relational model.

The relational algebra and relational calculus are concise and formal languages that are

inappropriate for casual users of a relational database. Therefore, commercial relational

database system products require a more user-friendly language: Quel and SQL (Structure

Query Language) are two widely used query languages available today. The first two rela­

tional database systems are System R, which was completed in 1979 by the IBM San Jose

Research Laboratory [IBM 1982], and Ingres, an experimental relational database

developed at the University of California at Berkeley which led to a commercial product

with the same name [Stonebraker 1986]. Quel was introduced as the query language for

the Ingres database system and SQL was introduced as the query language for System R.

In 1986, SQL was adopted by the American National Standards Institute (ANSI) as the

relational database query language.

The relational data model includes two integrity rules:

1. Entity Integrity: No field in a record that is part of the primary key can be null.

2. Referential Integrity: A record referred by another record must exist.

The purpose of the integrity rules are obvious; if entity integrity is not enforced, a record

may not have a value for the primary key and thus will not be uniquely identifiable. If

referential integrity is not enforced, a record may refer to another record that does not exist

in the database. In commercial relational databases, the entity integrity is enforced but the

referential integrity is generaly not enforced for efficiency reasons [Stonebraker 89].

When the relationship among data are complex, database design (or schema design) j
I

requires transformation of relations to what are known as Normal Forms. There are several

normal forms and each requires satisfaction of certain constraints on the fields. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

involves analyzing functional dependence of data entities based on intended semantics of

the data. Normal forms is an extensive subject and details may be found in reference

[Date 83].

S.2.2.2. Data Model Issues for Engineering Data

General engineering data involve relationships that are complex and data entities that

require elaborate data structures. Elaborate data structures as entries in the tables of the

relational data model can dramatically hinder the performance of responses to the data

manipulation language which usually operates on collections of tables. In addition, when

relationships among data items are complex, the relational database schema have to rely on

transformation of tables into normal forms; this process is eiTor prone especially for compli­

cated relations [Chen 78]. For these reasons, the existing relational model does not appear

to be well suited for general engineering data.

To deal with complex data, a generation of ideas came with data models that are now

grouped as post-relational models which include the functional data model, the semantic

data model and, most recently, the object oriented data model. These are generally

object-based logical record models that attempt to add semantics to the data model. One of

the first one was the entity-relationship model [Chen 76] that is now widely used in database

design.

The literature is full of ideas and models ; e.g., classes [Hammer 81], roles [Bachman 77],

molecular objects [Batory 85], Is-a hierarchy [Smith 77], Part-of hierarchy [Katz 86],

synonyms [Lohman 83], unique identifiers [Codd 79], extended relational model such as

POSTGRES [Rowe 87], etc. However, most of these models are good for certain type of

problems and somewhat deficient as a general data model. A comparison of some

engineering data models is given in [Hardwick 87].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

In general, an engineering data model must have the following basic features:

1. Capability to model complex relationships among data entities;

2. Capability to model general semantics in the data entities:

3. A set of constraints in the data model for integrity (e.g., referential integrity and

entity integrity) of the database;

4. Some mechanisms to modify and extend the underlying database schema.

Consider the modeling of a slab in a building. A slab is physically connected to beams

and girders. There may be many slab suppliers and different contractors may work on dif­

ferent parts of the building. In addition to the apparent physical properties of the slab, the

model of a slab must include the relationships it may have with different types of data that

represent suppliers, contractors, beams and girders. The set of relationships the model of

slab must capture is necessarily complex. One way of reducing the complexities in the rela­

tionships among data and the representations of data entities is to impose constraints in the

data model and have semantics in the data entities. In business applications, the database

sheme rarely changes; only the volume of data fluctuates. In engineering, the initial user

requirements of the engineering database is not likely to be complete or sufficient for the

entire life cycle of the database. Thus the original database scheme may later become

inappropriate and mechanisms to modify and extend the database scheme during the life

cycle of the engineering database are essential.

5.2.3. Object Oriented Databases

Over the last few years, researchers have developed object oriented database systems to

meet the needs of complex database applications [Kim 89]. Some of these systems are now

appearing in the commercial market place.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

First of all, object oriented databases are databases for objects. As such, they provide

features common in modem database systems. These features include the following:

1. Persistence: A n object should be able to outlive the process that created it.

2. Concurrency: Many concurrent processes should be able to share an object that is

persistent.

3. Resiliency: A database should be fault-tolerant in cases where the system fails.

4. Consistency: A database should contain consistent data.

5. Queries: Efficient access method should support the data model of the database.

The features of object oriented databases that distinguish them from others are due, in

part, to their resemblance to object oriented programming languages. These features

include the following:

1. Encapsulation (See also Chapter 2, Section 2.2.2): Method, which is a type of

code that has access to the instance variables of the object, is part of data. A data

item in the object oriented database is an object which includes a set of methods

to encapsulate the object’s state and behavior. This enables object oriented data­

bases to have application semantics embedded in each object.

2. Extensibility: Object oriented databases provide tools for building extensions and

one of the major technique for extension is inheritance. Various inheritance

mechanisms (See Chapter 2, Section 2.3.1) exist but many cannot be implemented

efficiently and others need to be restricted so that the objects’ semantics as they

are extended remain consistent.

What exactly is an object oriented data model cannot be defined yet. However, there are

some common features among the data models that are reported as object oriented and

they include the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

1. The data model has some encapsulation and extensibility features.

2. The data model is identity-based.

Identity-based means that reference to an object in the database is made through that

object’s unique identity, the object identifier. This implies that an object’s identity remains

invariant across all possible modifications of its state and enforcement of entity and

referential integrity is implicit in the model.

Active research continues in object oriented database systems (e.g., ORION [Kim 89];

Gemstone [Maier 8 6]; EXODUS [Carey 8 8]; Iris [Fishman 89]) and how these systems

evolve remains to be seen. The data models for these object oriented databases vary but

most of the features in these models by computer scientists are to study the feasible imple­

mentations of object oriented concepts applicable to the data models. The semantic rich­

ness to represent engineering information is generally not emphasized in the models.

On the other hand, the so called data models presented by the engineering community are

either too vaguely described to be called a data model or too specifically developed for an

application and thus by definition cannot be a good data model. In addition, these data

models generally lack some mechanism to organize the numerous objects in the database

for views and implementation independent schemes for access. An object oriented data

model presented in the following section suggests some solutions.

5.3. An Object Oriented Data Model

The object oriented data model described in this section is based on object oriented con­

cepts presented in Chapter 2. A number of the model’s features are as follows:

1. Encapsulation: Only the object’s methods have access to its instance variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8 8

2. Extensibility: Inheritance used to define new classes and schema evolution for

existing classes where class variables, instance variables and methods can be added

or deleted are supported by the data model.

3. Uniformity: A class is treated as a special type of object which results in unifor­

mity of the model where all activities of the database are via message passing

schemes.

4. Organization and Access: Sets of objects and Aggregation objects [Smith 77] sup­

ported by the model can be used for views and organization of objects. Associa­

tive access limited to indexable methods (defined in Section 5.3.1.) is also part of

the data model.

The data model presented here is intended to be the underlying data model for an object

oriented database for engineering applications. The current state of development of object

oriented databases allows reasonable support for most features presented, although some

may require more efficient implementation techniques than that exist today. The rest of

this section presents the specifics of the data model. Features considered to be an imple­

mentation detail are outside the scope of this dissertation and are not described.

The presentation is organized as follows:

1. Behavior of Classes and Objects : Describes Class-Creator (a unique and special

object that creates Class-Objects) and Class-Object (one for each class).

2. Initial Definition of a Class : Specifies the requirements for and restrictions on the

initial definition of each class.

3. Defining Classes: Describes how a Class-Object is instantiated by the Class-Creator

to define a new class. Indexable method is also defined.

4. Behavior of a Class-Object : Describes the functions of Class-Objects in this data

model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

5. Aggregation, Sets, and Associative Access : Describes how the objects in the data­

base can be conceptually organized and how index is used for accessing objects.

6. A n Example : Clarifies the terms used in this presentation.

1. Behavior of Classes and Objects

The proposed database has a special object called the Class-Creator which accepts a mes­

sage that contains the initial definition of a class. When this message is received, Class-

Creator invokes one of its methods and instantiates an object which has the definition of

the class. This object is called a Class-Object in the subsequent descriptions. A unique

Gass-Object exists for each class defined in the database.

A Gass-Object is a special type of object that has the class’s initial definition. The state of

a Class-Object can change to represent evolution of the class definition. Objects are instan­

tiated by sending messages to the Class-Object.

2. Initial Definition o f a Class

Initial definition of a class must include the following:

1. Class Variables : For each class variable, specify the type and value. The type

may be an intrinsic type defined for the database such as integer, real, characters

or a class defined in the database. A class is defined if its Class-Object is in the

database. The value of a class type is an object identifier.

2. Instance Variables : For each instance variable, specify the type. The type may

be an intrinsic type defined for the database such as integer, real, characters or a

class defined in the database.

3. Base Gasses : These classes must be defined in the database. For each base class,

specify whether the class (the class being defined) is to be treated as a member of

the base class (this is for indexing purposes).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

4. A set of method definitions : The set must include one or more creator method.

A creator method is invoked to instantiate an object in this class.

3. Defining Classes

When the initial definition of a class is sent to the Class-Creator object, the definition can

be either rejected or accepted.

If the initial definition of a class is rejected, then one of the following reasons is returned

to explain the rejection:

1. The classes used as type specification or as base classes are not defined in the data­

base.

2. The object identifier used as a value is not in the database.

3. Method definition invokes a method that is not in the scope, where the scope

includes methods defined for the class and its base classes.

If the initial definition of a class is accepted, the following events ensue:

1. A unique Class-Object for the class is added to the database.

2. For each method, indexability is determined.

A method is indexable if

1. The return type of the method is atomic and the type of that value is indexable,

i.e., integer, real, characters, or other types where an orderly sequence can be

defined; and

2. The execution of the method does not change the state of this or any other object.

If the code of the method does not contain any class or instance variables as left

hand value, then the state of the object is not changed by the method. This have

to be checked for other methods that this method can invoke.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

Objects in a class can only be indexed according to the value returned by an indexable

method.

Two types of index can be formed:

1. Index for all objects that are instances of the class.

2. Index for all objects that are members of the class. Members include instances of

the class and instances of the derived classes where it was declared that the objects

of the derived class are members of the base class.

4. Behavior o f a Class-Object

A Class-Object (at least one creator method must be included in the initial definition of

the class) invokes a creator method to instantiate objects in its class. There can be many

different creator methods for a Class-Object.

A Class-Object can receive a message that requests an addition or deletion of a class vari­

able, an instance variable, or a method. This is the mechanism for database schema evolu­

tion supported by this data model. To ensure consistency of existing objects in the data­

base the following conditions in each case must be satisfied :

1. Add a class variable: The variable name must be different from the instance and

other class variable names. The type and value of the variable must also be pro­

vided.

2. Delete a class variable: There are no methods in the class whose code refers to the

variable that is being deleted.

3. Add an instance variable: The variable name must be different from the class vari­

able and other instance variable names. The type and default value of the vari­

able must also be provided. The default value is this instance variable’s value for

all the objects in this class and its derived classes that existed in the database.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

4. Delete an instance variable: There are no methods that refer to the variable.

5. Add a method: There are no methods in the class that has die same name. If the

class has a base class, then the method name can not conflict with a method name

in the base class; this is to preserve the behavior of existing objects.

6. Delete a method: Other methods in the class do not invoke the method that is to

be deleted. If there are derived classes, the methods in the derived classes do not

invoke the method that is to be deleted.

An object’s class may evolve but throughout an object’s entire life cycle, its Class-Object

stays unique.

5. Aggregation, Sets and Associative Access

Aggregation is a powerful abstraction for database design [Smith 77], It can also be

characterized as a type of inheritance in an object oriented paradigm (See Chapter 2, Sec­

tion 2.3.1). Aggregation type of objects needs database support to efficiently access its

group of component objects. Clustering (physically placing component objects close

together) can improve the accessing performance.

The main organizational tool for the data model is sets. When Class-Object is instantiated,

a set is also formed. This set, called a Class-Set, holds all the objects in the database that

are instances of the class. Since each object has a unique object identifier, the objects

naturally form a set.

The set operations supported are union, intersection and subset. New sets that contain

objects from different classes can be formed. An individual object may be treated

equivalent to a set that contains that single object.

A subset of objects can be formed by identifying the objects by object identifiers. Another

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

method of forming a subset is with associative access.

An associative access contains the following items:

1. Class-Object

2. An indexable method (which returns x)

3. An operator (op) and

4. A constant (c)

The semantics of the above associative access is the following : for every object in the

Class-Object, if x op c is true put that object in the set that is to be returned. Note that x

op c must return true or false value.

6. An Example

Consider an object oriented database that will contain two classes: BEAM and COLUMN.

Then two COLUMN objects, c l and c l, and one BEAM objects b l are created in the

database. Using the names introduced in this section the following events will take place.

1 Initially, the Class-Creator is the only object in the database.

2 A user sends a message to Class-Creator that contains the definition of the BEAM

class; Class-Creator invokes one of its methods and instantiates BEAM-Object

which is a Class-Object. Similar events take place for COLUMN class.

3 There are three objects now in the data base; Class-Creator that can instantiate

Class-Objects, BEAM-Object that can instantiate BEAM objects, and COLUMN-

Object that can instantiate COLUMN objects.

4 A message is sent (the sender can be and object, user, or the database administra­

tor) to BEAM-Object to create one BEAM object: b l.

5 Two messages are sent to COLUMN-Object to create two COLUMN objects, c l

and c2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

The proposed model has many desirable features: everything is an object and message pass­

ing scheme is the only mechanism necessary for communication among objects, users and

the database administrator. The resulting model is simple, consistent and object oriented.

The power of the model, however, relies on the design of classes and this is dependent on

applications. The model remains a theoretical model in that it is not implemented in an

object oriented database management system. Although the model looks promising, only

efficient implementation will make it practical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1. Summary

This dissertation has investigated programming languages for engineering, an object

oriented finite element program, an object oriented development of engineering software,

and an object oriented data model for engineering databases. The approach adopted for

this study has generally emphasized the practical aspects (such as reusing available

resources, availability of systems in various machines, current programming and engineer­

ing practices) rather than theoretical concepts. Overall, an object oriented paradigm is the

unifying theme.

The C+ + language is advocated in Chapter 3 as an appropriate language to write the next

generation of engineering programs including the integrated structural engineering systems.

The reusability of existing codes in Fortran and C and the uniform support for procedural

and object oriented paradigms are considered as major merits of C+ + as a programming

language for engineering software.

An object oriented finite element program is developed using the C+ + language. Based

on the finite element program, a general guide for object oriented design and development

of engineering software using C + + is outlined in Chapter 4. It is based on levels of

abstraction and reusability of classes where the objective is to produce clear and modular

code that can be maintained. The design of classes based on levels of abstraction produces

reusable classes that can become base classes for other classes that may be needed in the

maintenance stage of the software; this is an efficient reusability mechanism because a sub­

stantial portion of the existing code can be used in compiled form. Examples of object

oriented techniques such as inheritance, polymorphism, overloading and late binding are

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

shown in the context of an object oriented finite element program.

An object oriented data model for engineering databases is presented in Chapter 5. The

model treats classes as objects which make the model simple and uniform; message sending

is the only mechanism necessary to create objects, delete objects, and change the class

definitions. The scheme for organizing the objects in the database are supported by sets

and aggregation objects. For practical implementation considerations, restrictions on

indexing and how class definitions can change are included in the model.

6.2. Recommendations for Further Research

Recently, both in academia and industry, there have been many theoretical investigations

and developments of models for processes and tasks that are targets for an integrated struc­

tural engineering system [Abdalla 89; An-Nashif 89; Sauce 89]. This study has focused on

fundamental tools for developing integrated structural engineering systems and other gen­

erally large engineering application programs. The object oriented software design method

and the object oriented data model presented in this dissertation are general and funda­

mental tools for developing an integrated structural engineering system.

The recommendations for further research listed below arc concerned with developing a

prototype of an integrated structural engineering system. The prototype should help to

understand whether these systems will be just a reliable organizational tool which makes

current structural engineering practices more efficient or whether these systems can change

the inherent inefficiencies in the organization of current practices and provide a better

structure where various tasks and processes can interact in an integrated environment.

Some of the topics recommended for further research are as follows:

1. Implement the object oriented data model presented in Chapter 5 on an object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

oriented database that provides the conventional database supports for objects such

as persistence, security, crash recovery and concurrency. First, the syntax and

grammar for data manipulation and data definition languages for the model must

be designed; since the data model is defined, the emphasis here should be in

choosing clear, meaningful, and coherent words and symbols for the languages.

The queries take forms that are similar to the ones in the relational data model

and thus many query optimizing techniques well established for the relational

databases should be applicable.

2. The object oriented data model presented in Chapter 5 has features that are

designed to support the semantic richness of data required by engineering applica­

tions. How to design the database schema with the model for these applications

needs to be investigated. Designing the object classes and organizing the objects

for different applications are some of the topics to be addressed.

3. Select and develop in detail a model for processes or tasks in structural engineering

that can be integrated (e.g., Component-Connection Model for buildings [Powell

88a; Powell 88b], Multilevel-Seleetion-Development model for structural design

[Sauce 89], etc.). Clearly identify the kinds of activity the model can support.

4. User interface is important for any software system. How to present the diverse

elements in an integrated environment to a user is a difficult problem that can be

a critical factor in determining the success or failure of an integrated system. Fun­

damental research in this area for engineering application programs are necessary.

5. Integration of object oriented programming languages and object oriented data­

bases is a research area in computer science. This dissertation has implicitly

assumed that there is a barrier between the applications and the database; i.e., an

object oriented database has been treated as a separate component that can be

interfaced to the rest of the system. An alternative object management system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98

where objects from databases and programs are treated uniformly may be a better

underlying system for certain types of integrated structural engineering systems.

6.3. Concluding Remarks

Programming languages, methods of program development and even data models have

characteristics common with religion. Many reasons people have for using a particular sys­

tem or method are not based on rational principles but based rather on a strong belief typi­

cally biased towards the first system they ever learned.

In structural engineering, there has been a desire for quite some time to move away from

Fortran, a language still used to write most structural engineering application programs.

As programs became larger to meet today’s more complex needs of clients, interest in data­

base systems has also been increasing. However, a new dominant language to replace For­

tran does not yet exist and use of a database in engineering applications is still not com­

mon. Several engineering systems have used relational databases but they have only indi­

cated the limitation of the relational data model for engineering applications.

This dissertation has advocated use of C+ + , a guideline for object oriented development

of engineering software, and an object oriented data model to describe engineering data in

object oriented databases. These are implementation tools that structural engineers may

choose to implement their software after the analysis of user requirements or a model for

an integrated structural engineering system has been completed. Theoretically, software

systems can be implemented with any tool, but often the quality and functions of a system

depend on particular tools used and thus these are critical choices. For those contemplat­

ing implementation of an integrated structural engineering system, the ultimate contribu­

tion of this study is to aid in making rational choices for their project, even when the par­

ticular model and style advocated in this dissertation are rejected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

REFERENCES

[Abdalla 89]

[Ada 83]

[Ada Letters 90]

[Anderson 64]

[An-Nashif 89]

[ANSI 85]

[Augensten 79]

[Bachman 77]

[Backus 81]

[Bathe 82]

[Batory 85]

[Baugh 89]

Abdalla, G .A ., "Object-Oriented Principles and Techniques for Com­

puter Integrated Design," Ph.D. Dissertation, Department of Civil

Engineering, University of California at Berkeley, CA, 1989.

Ada Programming Language, USA Military Standard, ANSI/MIL-STD-

1815A, February 1983.

ACM Ada Letters, Vol. X, No. 3, ACM Press, New York, NY, Winter

1990.

Anderson, C., An Introduction to ALGOL 60, Addison-Wesley, Read­

ing, MA, 1964.

An-Nashif, H .N ., "Automated Structural Analysis for Computer

Integrated Design," Ph.D. Dissertation, Department of Civil Engineer­

ing, University of California at Berkeley, CA, 1989.

ANSI Technical Committee X3J11, Preliminary Draft Proposed Stan­

dard - The C Language, X3 Secretariat, 311 First Street NW, Suite 500,

Washington DC 20001, 1985.

Augensten, M ., Data Structures and PL/I Programming, Prentice-Hall,

Englewood Cliffs, NJ, 1979.

Bachman, C., Daya, M ., "The Role Concept in Database Models,"

Proceedings, 1977 VLSI Conference, Tokyo, Japan, October 1977.

Backus, J., "The history of FORTRAN I, II and HI" in History o f Pro­

gramming Languages, edited by Weselblat, R.L., Academic Press, New

York, NY, 1981.

Bathe, K .J., Finite Element Procedures in Engineering Analysis,

Prentice-Hall, Englewood Cliffs, NJ, 1982, pp. 499-506.

Batory, D., Kim, W ., "Modeling Concepts for VLSI CAD Objects,"

IACM-TODS, September 1985.

Baugh, J.W ., Computational Abstractions for Finite Element Program­

ming, Ph.D. Dissertation, Department of Civil Engineering, Camegie-

Mellon University, September 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

[Becker 86]

[Bell 87]

[Belytschko 83]

[Bergman 90]

[Berry 88]

[Birtwistle 71]

[Bobrow 83]

[Boeing 82]

[Booch 86]

[Cannon 80]

[Carey 88]

[Cassel 83]

[Chen 76]

Becker, E.B., Carey, G .F., Oden, J.T ., Finite Elements, Vol. 1-6,

Prentice-Hall, Englewood Cliffs, NJ, 1981-1986.

Bell, D., Morrey, Pugh, J., Software Engineering, A Programming

Approach, Prentice Hall, Englewood Cliffs, NJ, 1987.

Belytschko, T ., Hughes, T .J.R ., (Editors), Computational Methods for

Transient Analysis, Vol. 1, North-Holland, New York, NY, 1983.

Bergman, N .J., "Three faces of Smalltalk," Computer Languages, Vol.

7, No. 4, April 1990, pp. 87-91.

Berry, J., C++ Programming, The Waite Group, Inc., Howard W.

Sams & Company, Indianapolis, IN, 1988.

Birtwistle, G ., et al., SIMULA BEGIN, Studentlitteratur, Lund, Sweden,

1971.

Bobrow, D ., Stefik, M., The LOOPS Manual, Xerox PARC, Palo Alto,

CA, 1983.

Boeing Computer Services Co., RIM - Relational Information Manage­

ment System (Version 5.0), Boeing Computer Services Co., Seattle, WA,

1982.

Booch, G ., "Object-Oriented Development," IEEE Transactions on

Software Engineering, Vol. SE-12, No. 2, February 1986, pp. 211-221.

Cannon, H .I., Flavors, Technical Report, MIT Artificial Intelligence

Laboratory, MIT, Cambridge, MA, 1980.

Carey, M.J., DeWitt, D .J., Vandenberg, S.L., "A Data Model and

Query Language for EXODUS," ACM SIGMOD International Confer­

ence on Management o f Data, Chicago, II, June 1988, pp. 413-423.

Cassel, D., The Structured Alternative: Program Design, Style, and

Debugging, Reston Publishing Company, Inc., Reston, VA, 1983.

Chen, P.P.S., "The Entity-Relationship Model - Toward a Unified

View of Data," ACM Transaction on Database Systems, Vol. 1/No. 1,

January 1976, pp. 9-36.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

[Chen 78] Chen, P.P.S., "The entity-relationship approach to logical database

database design," Monogram 6, QED Information Sciences, Wellesley,

MA, 1978.

[Clough 75] Clough, R.W., Penzien, J ., Dynamics o f Structures, McGraw-Hill, New

York, NY, 1975.

[CODASYL 71] CODASYL Data Base Task Group, "CODASYL Data Base Task

Group April 71 Report," ACM, New York, NY, 1971.

[Codd 70] Codd, E.F., "A Relational Model for Large Shared Databanks," Com­

munication o f The ACM, Vol. 13, No. 6, 1970, pp. 377-390.

[Codd 79] Codd, E .F., "Extending Database Relations to Capture More Mean­

ing," ACM-TODDS, December 1979.

[Colmerauer 73] Colmerauer, A ., et al., Un Systeme de Communication Homme-machie en

Francois, Research Report, Groupe Intelligence Artificielle, Universite

Aix-Marseille II, France, 1973.

Courant, R ., "Variational Methods for the Solution of Problems of

Equilibrium and Vibration," Bulletin o f American Mathematics Society,

Vol. 49, 1943, pp. 1-43.

Cox, B.J., Object Oriented Programming, An Evolutionary Approach,

Addison-Wesley, Reading, MA, 1986.

Craine, L., et al., PDA/PATRAN-G Users Guide, PDA Engineering,

Santa Ana, CA, 1981.

Date, C.J., An Introduction to Database Systems, Third Edition,

Addison-Wesley, Reading, MA, 1983.

Davis, G.B., Hoffman, T .R ., FORTRAN, a Structured, Disciplined

Style, McGraw-Hill, New York, NY, 1978.

Dawson, J., "A Family of Models", Byte, Vol. 14/No. 9, September

1989, pp. 277-286.

Dijkstra, E.W ., A Discipline of Programming, Prentice-Hall, Englewood

Cliffs, NJ, 1976.

[Courant 43]

[Cox 86]

[Craine 81]

[Date 83]

[Davis 78]

[Dawson 89]

[Dijkstra 76]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

[Felippa 81]

[Fenves 89a]

[Fenves 89b]

[Fenves 90]

[Fenves(S) 88]

[Fishman 89]

[Garett 89]

[Global 87]

[Goldberg 83]

[Goldberg 84]

[Hammer 81]

Felippa, C.A., "Architecture of a Distributed Analysis Network for

Computational Mechanics," Computers and Structures, 13(1-3), 1981,

pp. 405-413.

Fenves, G .L ., CE290C Course Notes, Department of Civil Engineer­

ing, University of California at Berkeley, CA, 1989.

Fenves, G .L., "Object Oriented Models for Engineering Data,"

Proceedings, ASCE Sixth Conference on Computing in Civil Engineer­

ing, Atlanta, Georgia, September 1989.

Fenves, G .L ., "Object Oriented Programming for Engineering Software

Development," Engineering with Computers, Vol. 6, 1990, pp. 1-15.

Fenves, S.J., Flemming, U ., Hendrickson, C., Maher, M.L., Schmitt,

G ., "An Integrated Software Environment for Building Design and

Construction," Proceedings o f the Fifth ASCE Conference on computing

in Civil Engineering: Microcomputers to Supercomputers, Alexandria,

VA., March 1988, pp. 21-32.

Fishman, D .H ., et al., "Overview of the Iris DBMS," Object Oriented

Concepts, Database, and Applications, edited by Kim, W., Lochovsky,

F .H ., ACM Press, New York, NY, 1989.

Garrett Jr., J .H ., Basten, J ., Breslin, J ., Anderson, T., "An Object-

Oriented Model for Building Design and Construction", Proceedings,

Sessions Related to Computer Utilization at Structures Congress ’89,

San Francisco, CA, May 1989, pp. 332-341.

XX Draft Proposed American National Standard For Fortran, Global

Engineering Documents Inc., Santa Ana, CA, October 1987.

Goldberg, A ., Robson, D ., Smalltalk-80: The Language and the Imple­

mentation, Addison-Wesley, Reading, MA, 1983.

Goldberg, A ., Smalltalk-80: The Interactive Programming Environment,

Addison-Wesley, Reading, MA, 1984.

Hammer, M., McLeod, D., "Database Description with SDM: A

Semantic Database Model," ACM-TODS, September 1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

[Hardwick 87]

[Hogg 85]

[Holtz 88]

[Howard 89]

[Hughes 87]

[IBM 78]

[IBM 82]

[Ichbiah 79]

[Katz 85]

[Katz 86]

[Keene 89]

Hardwick, M ., Spooner, D .L., "Comparison of Some Data Models of

Engineering Objects," IEEE Computer Graphics and Applications, Vol.

7/No. 3,1987, pp. 56-66.

Hogg, J., Nierstrsz, O.M., Tsichritzis, D.C., "Office Procedures," in

Office Automation: Concepts and Tools (edited by Tsichritzis, D.C.),

Springer-Verlag, Heidelberg, 1985, pp. 137-166.

Holtz, N.M ., Rasdorf, W ., "An Evaluation of Programming

Languages and Language Features for Engineering software Develop­

ment," Engineering with Computers, Vol. 3, 1988, pp. 183-199.

Howard, H .C., Levitt, R .E ., 'Linking Design Data with Knowledge-

Based Construction Systems", CIFE Flagship Project Proposal, Depart­

ment of Civil Engineering, Stanford University, Palo Alto, CA,

October 1989.

Hughes, T .J.R ., The Finite Element Method, Prentice-Hall, Englewood

Cliffs, NJ, 1987.

IBM Corporation, Information Management System/Virtual Storage Gen­

eral Information, IBM Form No. GH20-1260, SH20-9025, SH20-9026,

SH90-9027, 1978.

IBM Corporation, SQL/Data System Terminal Users Guide, IBM Form

No. SH24-5017-1, 1982.

Ichbiah, J.D ., et al., Rationale for the Design o f the Ada Programming

Languages, SIGPLAN Notices, June 1979.

Katz, R.H., Information Management fo r Engineering Design, Springer-

Verlag, 1985.

Katz, R.H., Chang, E ., Bhateja, R ., "Version Modeling Concepts for

Computer-Aided Design Databases," Report No. UCB/CSD 86/270,

EECS, University of California at Berkeley, CA, November 1986.

Keene, S.E., Object-Oriented Programming in Common LISP : a

Programmer’s Guide to CLOS, Addison-Wesley, Reading, MA, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104

[Keirouz 87]

[Kernighan 78]

[Kemighan 87]

[Kim 1989]

[King 86]

[Knuth 74]

[Kohnke 78]

[Korth 86]

[Kruse 84]

[Ladd 89]

[Lecluse 88]

[Lippman 89]

[Liskov 77]

[Logcher 71]

Keirouz, W .T., Rehak, D .R., Oppenheim, I.J ., "Development of an

Object-Oriented Domain Model for Constructed Facilities," Report No.

EDRC-12-10-87, Carnegie Mellon University, Pittsburgh, PA, 1987.

Kemighan, B.W., Ritchie, D.M., The C Programming Language,

Prentice-Hall, Englewood Cliffs, NJ, 1978.

Kemighan, B.W., Ritchie, D.M., The C Programming Language, 2nd

Ed., Prentice-Hall, Englewood Cliffs, NJ, 1987.

Kim, W., Lochovsky, F.H . (Editors), Object -Oriented Concepts, Data­

bases, and Applications, ACM Press, New York, NY, 1989.

King, R., 'Database Management System Based on an Object-Oriented

Model," Expert Database Conference, edited by Kerschberg, L.,

Benjamin/Cummings, Menlo Park, CA, 1986.

Knuth, D .E., "Structured Programming with Go To Statements," Com­

puting Surveys, ACM, Vol. 6, No. 4, 1974, pp. 261-301.

Kohnke, P.C., ANSYS Theoretical Manual, Swanson Analysis Systems,

Inc., Houston, PA, May 1978.

Korth, H .F., Silberschatz, A ., Database System Concepts, McGraw-Hill,

New York, NY, 1986.

Kruse, R, Data Structures and Program Design, Prentice Hall, Engle­

wood Cliffs, NJ, 1984.

Ladd, S.R., "OOPing in public”, Computer Languages, Vol. 7, No. 2,

February 1990, pp. 127-133.

Lecluse, C., Richard, P., Velez, F., "02, an Object-Oriented Data

Model," ACM Conference on the Management o f Data, 1988, pp. 424.

Lippman, S., C++ Primer, Addison-Wesley, Reading, MA, 1989.

Liskov, B., et al., "Abstraction Mechanisms in Clu," CACM Vol. 20,

No. 8, August 1977, pp. 564-576.

Logcher, R.D., et al., ICES STRUDL-II, Engineering User’s Manual,

Department of Civil Engineering, MIT, Cambridge, MA, 1971.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

[Maier 87]

[McLean 81]

[Milner 84]

[NASA 79]

[Neeley 89]

[Newmark 59]

[Nicklin 87]

[Nikhil 88]

[Plauger 90]

[Powell 88a]

[Powell 88b]

Maier, D., Stein, J., Otis, A ., Purdy, A ., "Development of an Object-

Oriented DBMS," Proceedings o f the ACM Conference on Object-

Oriented Programming Systems, Languages, and Applications, September

1986.

Mclean, D.M. (editor), MSC/NASTRAN Programmer’s Manual, MSR-

59, The MacNeal-Schwendler Corporation, Los Angeles, CA, June

1981.

Milner, R., "A Proposal for Standard ML," ACM Symposium on Lisp

and Functional Programming, August 1984, pp. 184-197.

The NASTRAN User’s Manual (Level 17.5), NASA SP223 (3&4),

COSMIC, 1979.

Neeley, D., "Integrated Solutions," Cadence, October 1989, pp. 109-

110.

Newmark, N.M., "A Method of Computation for Structural Dynam­

ics," Journal o f the Engineering Mechanics Division, ASCE, 1959, pp.

67-94.

Nicklin, P.J., Powell, G .H ., Hollings, J.P., "Hierarchical Data

Management for Structural Analysis," Engineering with Computers, Vol.

1, 1987, pp. 135-143.

Nikhil, R.S., ID Reference Manual, Computation Structures Group

Memo 284, MIT Laboratory for Computer Science, March 1988.

Plauger, P.J., "The Politics of Standards," Computer Language, Vol. 7,

No. 2, 1990, pp. 17-22.

Powell, G .H ., Bhateja, R ., 'Data Base Design for Computer-Integrated

Structural Engineering," Engineering with Computers, Vol. 4, 1988, pp.

135-143.

Powell, G .H ., Bhateja, R.,Abdalla, G., An-Nashif, H ., Martini, K.,

Sauce, R ., "A Database Concept for Computer Integrated Structural

Engineering Design," Proceedings, ASCE Fifth Conference on Comput­

ing in Civil Engineering, Alexandria, Virginia, March 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106

[Rasdorf 85]

[Rehak 89]

[Roos 67]

[Rowe 86]

[Rowe 87]

[Sauce 89]

[Schmucker 86]

[Smith 77]

[Smith 86]

[Smith 90]

[Sommerville 89]

[Sterling 86]

Rasdorf, W .J., Salley, G .C., "Generative Engineering Databases -

Towards Expert Systems," Computers and Structures, vol. 20, 1985, pp.

11-15.

Rehak, D .R ., Baugh, J.W ., "Implementation of a Finite Element Pro­

gramming System - A Declarative Approach," Computer Utilization in

Structural Engineering, ASCE Structures Congress ’89, San Francisco,

CA, May 1989, pp. 91-100.

Roos, D ., ICES System Design, Second Edition, Cambridge, MA.,

1967.

Rowe, L ., CS160 Course Notes, Department of Electrical Engineering

and Computer Science, University of California at Berkeley, CA, 1986.

Rowe, L .A ., Stonebraker, M .R ., "The POSTGRES Data Model,"

Proceedings, Thirteenth International Conference on Very Large Data­

bases, Brighton, U.K., 1987.

Sauce Jr., S., "A Model of the Design Process for Computer Integrated

Structural Engineering," Ph.D. Dissertation, Department of Civil

Engineering, University of California at Berkeley, CA, 1989.

Schmucker, K., Object-oriented Languages on the Macintosh, Apple

Press, 1986.

Smith, J ., Smith, D ., 'Database Abstractions: Aggregation and Gen­

eralization," ACM-TODS, July 1977.

Smith, B., Wellington, J., Initial Graphics Exchange Specification

(IGES) Version 3.0, National Bureau of Standards, NBSIR 86-3359,

Gaithersburg, Maryland, April 1986.

Smith, J.D ., Reusability & Software Construction: C & C++, John Wiley

& Sons, New York, NY, 1990.

Sommerville, I., Software Engineering, 3 ed., Addison-Wesley, Read­

ing, MA, 1989.

Sterling, L ., Shapiro, E ., The Art o f Proglog, MIT Press, Cambridge,

MA, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

[Stonebraker 83]

[Stonebraker 86]

[Stonebraker 90]

[Stroustrup 86]

[Stroustrup 87]

[Stroustrup 88a]

[Stroustrup 88b]

[Taylor 77]

[Taylor 87]

[Turner 56]

[USENIX 88]

[Weiner 88]-

[Wilensky 84]

Stonebraker, M., et.al., 'Performance Analysis of Distributed Data

Base Systems," Proc. Third Symposium on Reliability in Distributed

Software and Database Systems, Clearwater, FL., 1983.

Stonebraker, M., (Editor), The Ingres Papers, Addison Wesley, Read­

ing, MA, 1986.

Stonebraker, M., CS286 Course Notes, Department of Electrical

Engineering and Computer Science, University of California at Berke­

ley, CA, 1990.

Stroustrup, B., The C++ Programming language, Addison-Wesley,

Reading, MA, 1986.

Stroustrup, B., 'Multiple Inheritance for C+ + ," Proceedings o f the

Spring ’87 EUUG Conference, Helsinki, May 1987.

Stroustrup, B., "What is Object-Oriented Programming," IEEE

Software, Vol. 5, No. 3, May 1988, pp. 10-20.

Stroustrup, B., "Parameterized Types for C+ + ," C++ Conference

Proceedings, USENIX Association, Denver, CO, October 1988, pp. 1-

18.

Taylor, R .L., "Computer Procedures for Finite Element Analysis,"

Chapter 24 in The Finite Element Method by O.C. Zienkiewicz, 3rd

Edition, McGraw-Hill Book Co., London, 1977.

Taylor, R .L., CE222 Course Notes, Department of Civil Engineering,

University of California at Berkeley, CA, Fall 1987.

Turner, M .L., Clough, R.W ., Martin, H .C ., and Topp, L.J., "Stiffness

and Deflection Analysis of Complex Structures," Journal o f Aeronautical

Sciences, Vol. 23, No. 9, 1956, pp. 805-823.

C++ Conference Proceedings, USENIX Association, Denver, CO,

October 1988.

Weiner, R.S., Pinson, L .J., An Introduction to Object Oriented Pro­

gramming and C++, Addison-Wesley, Reading, MA, 1988.

Wilensky, R., LISP craft, W.W.Norton & Company, 1984.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108

[Wilson 70]

[Wilson 90]

[Wirth 71]

[Wirth 77]

[Wirth 88]

[Yoon 89]

[Zienkiewicz 89]

[Zortech 89]

Wilson, E .L ., "SAP - A General Structural Analysis Program," Report

No. UCB/SESM-70/20, University of California at Berkeley, CA, Sep­

tember 1970.

Wilson, E .L ., Habibullah, A ., "SAP90 - A Program for the Static and

Dynamic Finite Element Analysis of Structures," Computer & Struc­

tures, Inc., 1918 University Avenue, Berkeley, CA 94704, 1990.

Wirth, N., "The Programming Language PASCAL," Acta Infomatica 1,

1971, pp. 35-63.

Wirth, N., "Modula: A language for multiprogramming," Software-

Practice and Experience 7, 1977, pp. 3-35.

Wirth, N., Programming in Modula-2, 4th Ed., Springer-Verlag, Berlin,

1988.

Yoon, C., "OPFI - Object Oriented Program for Finite Element

Instruction," Report No. UCB/SESM-89/02, University of California at

Berkeley, CA, February 1989.

Zienkiewicz, O.C., Taylor, R .L ., The Finite Element Method, 4th edi­

tion, McGraw-Hill Book Co., London, 1989.

Zortech C++ Compiler V2.0: Compiler Reference, Zortech Inc., Arling­

ton, MA, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

APPENDIX : Declarations of Classes in OPFI

1. input

2. output

3. gstif (global stiffness)

4. Shape (shape functions)

5. Stress (stress matrix)

6. Stif_mat (stiffness matrix)

7. Dmat (elasticity matrix)

8. Gpoint (Gauss weights and points)

9. Bmat (strain matrix)

10. estif (element stiffness)

/ *
* * DECLARATIONS FOR CLASS i n p u t
* /
c l a s s i n p u t (d o u b l e * c o o r ;

i n t * n e l e m ;
i n t * nboun ;
d o u b l e * d l o a d ;
c h a r * mate_name;
d o u b l e * dmate ;

p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS i n p u t
i n p u t (i n t dim, i n t d o f , i n t nen , i n t n p t , i n t n e I , i n t nbc ,

i n t n l d , i n t nms, i n t nmt) ;
/ / ARGUMENT RETURNED VALUE

d o u b 1e x (i n t) / / n o de number x c o o r d i n a t e
d o u b 1e y (i n t) / / n o de number y c o o r d i n a t e
d o u b 1e z (i n t) / / n o de number z c o o r d i n a t e
d o u b 1e x y z (i n t , i n t) / / d i m , node number di m’ s c o o r d i n a t e

/ / dim =1 f o r x , 2 f o r y , and 3 f o r z
i n t * e 1e m(i n t) / / e l e m e n t number e l e m e n t i n c i d e n c e [n e n]
i n t b o u n _ n o d (i n t) / / b e number node number
i n t b o u n _ c o n (i n t) / /

/ /
be number co de : 0 = f i x e d ;

n=n t h d o f f i x e d
i n t 1o a d _ n o d (i n t) / / l oa d number node number
i n t 1o a d _ d o f (i n t) ; / / l o a d number d o f o f l oad: l = x , 2 = y , 3=z
d o u b 1e 1o a d _ v a 1 (i n t) / / l o a d number l oad v a l u e
c h a r * m a t _ n a m e (i n t) ; / / p r o p e r t y number p r o p e r t y v a l u e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110

doub I e
tna t e _ v a I (c h a r * , i n t) ; / / m a t e r i a l

} ; / / name, s e t
m a t e r i a l p r o p e r t y

va I ue

DECLARATIONS FOR CLASS o u t p u t
/ *
**
* /
c l a s s o u t p u t (i n p u t * I p;

g s t i f * Kp;
d o u b l e * aa;
i n t na;

p u b l i c ; / / PUBLIC FUNCTIONS FOR CLASS o u t p u t
o u t p u t (i n p u t S I , g s t i f S K) ;
d o u b l e * a u x (i n t) ; / / r e t u r n a u x i l i a r y d a t a f o r e l e m e n t n
v o i d d i s p l (i n t = 0) ; / / p r i n t n o d a l d i s p l a c e m e n t s

J;

/ *
* * DECLARATIONS FOR CLASS g s t i f
* /
cI a s s g s t i f I i n t * i d

i n t neq
d o u b 1e * b
d o u b 1e * d
d o u b 1e * u
i n t * 1 m
i n t * jp
i n p u t * I p

p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS g s t i f
g s t i f (i n p u t S) ;
i n t e q (i n t , i n t)

d o u b l e * d l _ v e c ()
v o i d a d d (d o u b I e , i n t , i n t)
g s t i f S o p e r a t o r + (e s t i f S)
v o i d l o a d O
v o i d s o l v e d

I;

/ *
* *

* /

/ / r e t u r n e q u a t i o n number s t a r t i n g
/ / f rom 1, g i v e n (d o f , c o o r)
/ / r e t u r n l o a d v e c t o r b
/ / a d d (a , i , j) a d d s a t o A C i , j)
/ / a s s e m b l e e s t i f t o g s t i f , K= K+KE
/ / form l o a d v e c t o r i n b
/ / s o l v e Ax=f (x = b , f = b , A - > d , u , j p)
/ / A i s s y m m e t r i c

DECLARATIONS FOR CLASS S ha p e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

c l a s s Bmat;
c l a s s S h a p e ! c h a r * s ;
p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS S h a p e

S h a p e !) ; / / ARGUMENT
c h a r * s h p (i n t) ; / / i n t e g e r (1 - n e n)

J;

RETURNED VALUE
s h a p e f u n c t i o n

DECLARATIONS FOR CLASS S t r e s s
/ *
* *

* /
c l a s s S t r e s s ! d o u b l e * s ; / / co l u mn maj or
p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS S t r e s s

S t r e s s 0
v o i d s t o r e !)
d o u b l e * m a t r i x !)
S t r e s s S o p e r a t o r * (d o u b I e)

/ / * * n o t i mp l e me n t e d
/ / r e t u r n s
/ / * o p e r a t o r , - > S = S*a
/ / S t r e s s S = S t r e s s * d o u b I e

DECLARATIONS FOR CLASS S t i f _ m a t

);

/ *
* *

* /
c l a s s S t i f _ m a t ! d o u b l e * d ;

d o u b l e * u ;
p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS S t i f _ m a t

S t i f _mat 0
d o u b I e * d s t i f 0
d o u b I e * u s t i f 0
vo i d i n i t ()
S t i f _ ma t S

/ / r e t u r n d
/ / r e t u r n u
/ / i n i t i a l i z e d and u t o z e r o
/ / + o p e r a t o r , - > eK=eK+gK

o p e r a t o r + (S t i f _ m a t S) ; / / S t i F _ m a t S = S t i f _ m a t + S t i f _ m a t S

/ *
* *

* /
c l a s s Dmat

DECLARATIONS FOR CLASS Dmat

f d o u b l e * d _ t
i n p u t * Ip ;

p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS Dmat
Dmat (i np u t S)
d o u b l e * m a t r i x _ t ()
S t r e s s o p e r a t o r * (B m a t S)

I ; / /

/ / r o u m a j o r , i . e . t r a n s p o s e d

/ / r e t u r n d _ t ,
/ / * o p e r a t o r .

- r o u maj or
- > S = D*B

S t r e s s = Dmat*Bmat&

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

/ *
* * DECLARATIONS FOR CLASS G p a i n t
* /
c l a s s G p o i n t (i n t ng ;

d o u b l e * g ;
p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS G p o i n t

Gpo i n t () / / ARGUMENT
i n t p o i n t s !) / /
d o u b l e u t (i n t) / / g a u s s p o i n t
d o u b 1e x 1 (i n t) / / g a u s s p o i n t
d o u b 1e y ! (i n t) / / g a u s s p o i n t
d o u b 1e z 1 (i n t) / / g a u s s p a i n t
d o u b l e x y z l (i n t , i n t) / / d im, p o i n t

RETURNED VALUE
g a u s s p o i n t s
g a u s s He i g h t

l o c a l x c o o r d i n a t e
l o c a l y c o o r d i n a t e
l o c a l z c o o r d i n a t e
l o c a l dim c o o r d i n a t e

DECLARATIONS FOR CLASS Braat

bn
b

j ac

Ip

I;

/ *
* *

* /
cI a s s Bmat { i n t *

d o u b I e *
d o u b I e
i n p u t *
d o u b l e * c o o r
c h a r * shp
c h a r * drv

p u b l i c : / / PUBLIC FUNCTIONS
B m a t (i nput&)

d o u b l e * m a t r i x !)
d o u b l e j a c o b i a n d
d o u b l e x f i n t i)
d o u b I e y (i n t i)
d o u b I e z (i n t i)
d o u b l e x y z l i n t i . i n t j)
c h a r * s h a p e (i n t)
c h a r * d e r i v l i n t i , i n t j)
i n t d d i m (i n t i , i n t j)

v o i d s e t _ v a l (S h a p e &)
v o i d s e t _ x y z (d o u b I e * *)
vo i d form(Gpo i n t & , i n t)

/ / co l umn m a j o r , t r a n s () - > r o n major

/ / 1 - d , g l o b a l c o o r d i n a t e s o f nodes
/ / 1 - d , e a c h s h a p e i s c h a r [100]
/ / 1 - d , e a c h d e r i v a t i v e i s c h a r [300]

FOR CLASS Bmat
; / / a l l o c a t e s t o r a g e

/ / RETURNED VALUES
/ / b
/ / j a c
/ / x c o o r d i n a t e o f n o de i
/ / y c o o r d i n a t e o f n o d e i
/ / z c o o r d i n a t e o f n o d e i
/ / dim i c o o r d i n a t e o f n o de j
/ / s h a p e f u n c t i o n f o r node i n t
/ / dim i d e r i v a t i v e o f s h a p e j
/ / d e r i v a t i v e d i m e n s i o n o f B (i j)
/ / EFFECTS
/ / s e t shp and d r v v a l u e s
/ / s e t x y z v a l u e s
/ / form B (G , G . p o i n t _ n u m b e r) i n b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113

v o i d t r a n s O ; / / f orm B t r a n s p o s e d , i n row major
S t i f _ m a t o p e r a t o r * (S t r e s s) ; / / u s a g e : gK = B*S

) ;

/ *
* *

* /
DECLARATIONS FOR CLASS e s t i f

/ / e « , G , D , S h p , B i n i t i a l i z e d f i r s tc l a s s e s t i f (S t i f _ m a t eK
G p o i n t G
□mat □
S ha pe Shp
Bmat B
i n t e l
i n p u t * Ip

p u b l i c : / / PUBLIC FUNCTIONS FOR CLASS e s t i f
e s t i f (i n p u t S) ; / / RETURNED VALUES
d o u b l e * s t i f _d () ; / / d i a g o n a l e l e m e n t s t i f f n e s s
d o u b l e * s t i f _ u () ; / / o f f - d i a g o n a l e l e m e n t s t i f f n e s s
i n t e l e m O ; / / e l e m e n t number

/ / EFFECT
v o i d f o r m (i n t) ; / / form e l e m e n t s t i f f n e s s (e 1ement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

